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The nonclassicality of quantum states is a fundamental resource for quantum technologies and quantum
information tasks, in general. In particular, a pivotal aspect of quantum states lies in their coherence
properties, encoded in the nondiagonal terms of their density matrix in the Fock-state bosonic basis. We
present operational criteria to detect the nonclassicality of individual quantum coherences that use only data
obtainable in experimentally realistic scenarios. We analyze and compare the robustness of the nonclassical
coherence aspects when the states pass through lossy and noisy channels. The criteria can be immediately
applied to experiments with light, atoms, solid-state system, and mechanical oscillators, thus providing a
toolbox allowing practical experiments to more easily detect the nonclassicality of generated states.
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Introduction.—The nonclassicality of quantum states is
of utmost importance for quantum information tasks [1],
ranging from quantum communication and computation
[2–5], quantum sensing [6], and thermodynamics [7]. For
bosonic systems, a common definition of nonclassicality is
the indivisibility of single bosons [8–11]. Another standard
approach in quantum optics is to define a state ρ as
nonclassical if it cannot be written as a convex decom-
position of coherent states [12–14]:

ρ ¼
Z

d2αPðαÞjαihαj ð1Þ

for some non-negative probability distribution P
[12,15,16]. This is referred to as P nonclassicality
[17,18] and is the kind of nonclassicality that will be the
focus of this Letter. Some further details about the formal
definition of P nonclassicality are reviewed in
Supplemental Material [19]. Note how the definition of
P nonclassicality we study here differs from the one used in
the context of resource theories of coherence [20]. For
example, a classical state can have nondiagonal matrix
components in the Fock-state basis, and pure Fock states
are highly nonclassical. On the other hand, resource
theories of coherence might consider states like j1i as
“classical” [20]. Operationally, coherent states jαi are ideal
states of a linear oscillator driven by external coherent
force. In general, reconstructing the P function experimen-
tally is highly nontrivial [21,22]. Proposed criteria to detect
P nonclassicality include witnesses relying on bounds on
expectation values with respect to the P function [23,24]
and hierarchies of necessary and sufficient nonclassicality
criteria based on the moments of distribution [25–29],
among other approaches [30–34]. These methods share the
shortcoming of relying on global properties of the state,

such as statistical moments, rather than being tailored to
information directly accessible experimentally. Other
nonclassicality criteria, based on photon-click statistics
[35–40], are based on operationally measurable quantities
but are tied to specific detection schemes.
As of yet, no nonclassicality criterion specifically

tailored at individual quantum coherences—thus, not
requiring an extensive characterization of the state—is
known. A possible reason for this is that, while the shape
of the set of classical states when only diagonal matrix
elements are being observed is relatively manageable via
generalized Klyshko-like inequalities [18,41], finding sim-
ilar inequalities when coherences are also involved is
highly nontrivial. However, quantum coherences being a
useful resource for a variety of quantum information tasks
[20,42], understanding the nonclassicality involving indi-
vidual coherences would be valuable from both experi-
mental and fundamental viewpoints. In this Letter, we lay
out a framework to characterize the P nonclassicality using
operationally accessible Fock-state quantum coherences.
This allows us to discuss the role of coherence-based
observables in certifying incompatibility with classical
states of the form (1). Simultaneously, this enables us to
establish experimental tasks in which the coherence among
Fock states represents a necessary requirement for P-
nonclassicality certification or enhances the capability to
manifest such P nonclassicality. By contrast, criteria reliant
only on Fock state probabilities [18] remain insensitive to
this coherence. To ensure seamless applicability to exper-
imental scenarios, our criteria exploit only knowledge of
the expectation values of few observables, as one would
have access to in realistic circumstances. To achieve this,
we devise an approach to nonclassicality detection based on
incomplete knowledge of the density matrix [18,43],
extending the current state of the art by analyzing the
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information hidden in off-diagonal terms. These elements
are directly measurable by Ramsey-like interferometry of
trapped ion [44], superconducting circuit experiments [45],
and electromechanical oscillators [46]. For light, atomic
ensembles, and optomechanical oscillators, they can be
reconstructed using homodyne tomography. We compare
our criteria to those relying only on Fock-state probabilities
[18,41] and analyze the nonclassical depth of various
quantum coherences represented by different off-diagonal
elements.
We find that observing coherence terms can provide

enhanced predictive power in terms of nonclassicality
detection compared to the information provided by only
Fock-state probabilities [18] and showcase this in several
instances of nonclassicality in one-, two-, and three-
dimensional spaces. More precisely, we find that Fock-
state probabilities alone are sometimes sufficient to detect
nonclassicality, whereas in other situations knowledge
about coherences provides enhanced predictive power.
We show how each set of different measured observables
provides a distinct boundary of nonclassicality and study
the behavior in these spaces of superposition states subject
to attenuation and thermal noise. This highlights how
different types of noise affect the observable nonclassicality
in nontrivial ways even in low-dimensional spaces.
General framework: Support function and support

hyperplanes.—Suppose we are given the expectation values
hOii for some set of observables Oi and want to determine
whether they are compatible with some classical state.
Given the relevant Hilbert spaceH, denote withQ the set of
density matrices and with C ⊂ Q the closure of the convex
hull of the coherent states in Q. Let us also denote with
OðρÞ≡ ½TrðOkρÞ�nk¼1 the set of expectation values obtained
measuring ρ. We seek a method to determine whether,
given an unknown state ρ, there is σ ∈ C compatible
with the observed measurements, that is, whether
OðρÞ∈ fOðσÞ∶σ ∈ Cg.
The convexity of C and Q allows one to characterize

them via supporting hyperplanes, using the tools of convex
geometry [47]. Any closed convex set A ⊂ Rn is charac-
terized by its support function hA∶ Rn → R, defined as
hAðnÞ ¼ supx∈Ahn; xi. Geometrically, hAðnÞ represents the
distance from the origin to the hyperplane tangent to A
orthogonal to n. To devise criteria with direct operational
applicability, we consider the projection of C, Q onto the
finite-dimensional subspaces spanned by the measured
observables. We then denote with hCðnÞ and hQðnÞ the
support functions of C andQ within these projected spaces.
These support functions characterize everything about the
boundary of C, Q that can be inferred from the few
measured observables. The task of nonclassicality detec-
tion, thus, translates into determining whether there is n
such that hQðnÞ > hCðnÞ. Whenever this is the case, it is
possible to find a set of measurement results O∈Rn such
that n · O > hCðnÞ, which certifies that these measurement

results are not compatible with any classical state. By
studying the structure of hCðnÞ and hQðnÞ, we fully
characterize the geometry of the C accessible from mea-
surements. In some cases, this can lead to Klyshko-like
nonclassicality criteria [18,41]. Notably, in many of the
scenarios considered here, we will derive the criteria
without explicitly involving the support function. This is
possible in sufficiently simple situations where we can
devise ad hoc procedures to reach a conclusion. Such
ad hoc derivations can be regarded as a way to achieve a
full characterization of hCðnÞ for all of n. Directly using the
support function remains nonetheless very useful, as we
will show in some explicit cases. While some of the
underlying geometric insight was previously discussed in
[18], considering coherences makes the task significantly
more difficult and reveals interesting new phenomenology,
on top of the clear advantages in applicability when
measuring coherences is experimentally viable.
Computing hQðnÞ is generally easier, requiring finding

the largest eigenvalue of n · O≡P
i niOi, that is, comput-

ing the operator norm kn · Okop. Nonetheless, this does not
trivially translate into an algebraic characterization of the
boundary of Q, which requires solving such maximization
for all n. Computing hCðnÞ is, in general, also difficult,
requiring one to maximize

P
i niTrðOiρÞ over all ρ∈ C. We

show here how to tackle these tasks in several cases of
interest.
Coherence terms.—To focus on the nonclassicality of

coherences, we consider as basic observables Xjk ≡
jjihkj þ jkihjj and Yjk ≡ iðjkihjj − jjihkjÞ, which general-
ize nondiagonal Pauli matrices in higher dimensions. These
capture coherence information not directly accessible via
the Fock-state number probabilities Pj ≡ jjihjj. The
expectation values of Xjk and Yjk on a coherent state
jαi, with α ¼ ffiffiffi

μ
p

eiϕ, are related to Pi as

Xij ¼ 2
ffiffiffiffiffiffiffiffiffiffi
PiPj

p
cos½ϕði − jÞ�;

Yij ¼ 2
ffiffiffiffiffiffiffiffiffiffi
PiPj

p
sin½ϕði − jÞ�: ð2Þ

For ease of notation, here and in the rest of the Letter, we
will with some abuse of notation conflate the operators Xjk

with their expectation values on a given state ρ,
hXjkiρ ≡ TrðXjkρÞ. For example, Eq. (2) would be more

precisely written as hXjkiα ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hPjiμhPkiμ

q
cos½ϕðj − kÞ�.

More generally, we can consider the rotated operators
RjkðθÞ≡ cosðθÞXjk þ sinðθÞYjk, whose expectation
value on coherent states reads RjkðθÞ ¼
2

ffiffiffiffiffiffiffiffiffiffi
PjPk

p
cos½θ − ϕðj − kÞ�.

Quantum boundary.—When dealing with only Fock-
state probabilities, any probability distribution is compat-
ible with some quantum state, and, thus, the boundary ofQ
is simply defined by the relations

P
j Pj ≤ 1 and

0 ≤ Pj ≤ 1. The situation changes significantly when
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coherence terms are considered. Finding the boundary ofQ
then amounts to figuring out the conditions under which the
observed expectation values fit into a positive semidefinite
matrix. We refer to Supplemental Material [19] for further
details.
Nonclassicality criteria.—We will discuss here the non-

classicality certifiable via nondiagonal elements of the
density matrix in the Fock-state basis, as well as the
nonclassicality encoded in nontrivial combinations of
different coherence terms, or in nontrivial combinations
of both coherence terms and Fock-state probabilities.
One-dimensional criteria.—We first study nonclassical-

ity criteria associated with individual coherence terms
RjkðθÞ. These are the easiest to apply in any experimental
scenario where coherences are measured. In these spaces,
the set of all states is bounded by jRjkðθÞj ≤ 1, with bound
saturated by the state ð1= ffiffiffi

2
p Þðjji þ eiθjkiÞ. On the other

hand, the corresponding classical bound is

jRjkðθÞj ≤ max
ρ∈ C

2
ffiffiffiffiffiffiffiffiffiffiffiffi
ρjjρkk

p ¼ 2e−ðjþkÞ=2 ½ðjþ kÞ=2�ðjþkÞ=2ffiffiffiffiffiffiffiffi
j!k!

p ;

ð3Þ

where the maximization can be restricted to the set of
coherent states. The corresponding bound for the set of all
states is instead jRjkðθÞj ≤ 1, saturated by the state
ð1= ffiffiffi

2
p Þðjji þ eiθjkiÞ. In particular, we have

jX01j ≤
ffiffiffi
2

p
e−1=2 ≈ 0.86; jX02j ≤

ffiffiffi
2

p
e−1 ≈ 0.52;

jX12j ≤
ffiffiffiffiffi
27

p

2
e−3=2 ≈ 0.58: ð4Þ

This means that, e.g., measuring any value for the coher-
ence of 0.87 ≤ jX01j ≤ 1 is sufficient to certify nonclassi-
cality. We refer to states violating any such inequality as
displaying nonclassical coherence. As an interesting exam-
ple showcasing the nontriviality of nonclassical coher-
ences, consider any ρ that is a mixture of the
nonclassical state j1i with any classical ρcl. Although such
ρ might be recognizable as nonclassical via some observ-
able, because only ρcl produces coherence terms, it will not
display any nonclassical coherences, meaning it is not
recognizable as nonclassical by any criterion involving
only coherence terms. This example again highlights the
contrast between resource-theoretic definitions of “non-
classical coherence,” in which Fock states like j1i are
“classical,” and the quantum optical perspective, in which
they are instead nonclassical by definition, and when
mixed with a classical state ρcl can result in states whose
nonclassicality can be probed only via coherence
measurements.
Two-dimensional criteria.—Even though one-

dimensional criteria using individual coherences can
always be applied, we can devise stronger criteria

characterizing higher-dimensional boundaries. This allows
detecting as nonclassical states whose nonclassicality could
not be deduced from any individual coherence term. For
example, when measuring the pair of coherences ðXjk; YjkÞ,
Q is characterized by the inequality X2

jk þ Y2
jk ≤ 1, satu-

rated by states of the form ð1= ffiffiffi
2

p Þðjji þ eiθjkiÞ for all
θ∈ ½0; 2π�. On the other hand, C only forms a circle of
radius given by Eq. (3). It follows that measuring any pair
of values for ðXjk; YjkÞ that falls outside such circle is
sufficient to certify the nonclassicality of the underly-
ing state.
One can also ask what nonclassicality is encoded in pairs

of observables including both coherences and Fock prob-
abilities. Consider, for example, some RjkðθÞ together with
Pj. The boundary of Q corresponds to

jRjkðθÞj ≤ max
Pk

2
ffiffiffiffiffiffiffiffiffiffi
PjPk

p ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pjð1 − PjÞ

q
; ð5Þ

where the maximum is taken with respect to all non-
negative reals Pk such that Pj þ Pk ≤ 1 [that is, over all
quantum states compatible with the given values of Pj and
RjkðθÞ]. On the other hand, classical states provide a
generally more complex boundary. For example, in the
space ðP0; X01Þ, the boundary is defined by the inequalities
0 ≤ P0 ≤ 1 and

0 ≤ jX01j ≤ 2P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− logP0

p
; ð6Þ

with the latter saturated by coherent states. Equation (6)
means that there are states whose nonclassicality cannot be
detected measuring P0, nor measuring X01 and applying
Eq. (4), but is nonetheless revealed properly exploiting the
knowledge of both P0 and X01. An explicit example of this
is measuring P0 ¼ 0.2 and X01 ¼ 0.6, where we do not
detect nonclassicality using only P0 or X01, but we do via
criterion in the two-dimensional space ðP0; X01Þ.
In Fig. 1, we show how the nonclassicality criteria look

like in two-dimensional spaces involving coherence terms
and highlight the nonclassicality threshold corresponding
to the one-dimensional criterion with X01. This corresponds
to projecting each of the given plots onto the horizontal
axis. Further details on these criteria and their derivation is
found in Supplemental Material [19]. Figure 1 shows that
measuring coherence terms provides valuable nonclassi-
cality information. This is reflected in the blue solid line in
the figures being a strict subset of the gray solid line. This
means that measuring any pair of expectation values to be
outside of the blue region is sufficient to certify the
nonclassicality of the underlying state, thus making for
criteria directly usable in experiments.
Three-dimensional criteria.—Another interesting case is

obtained considering both Fock-state probabilities and
coherences. For example, in the space ðP0; P1; X01; Y01Þ,
the set Q is characterized by the trivial constraint
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0 ≤ P0 þ P1 ≤ 1 on the probabilities, with the additional
constraint

X2
01 þ Y2

01 ≤ 4P0P1 ⇔ jR01ðθÞj ≤ 2
ffiffiffiffiffiffiffiffiffiffiffi
P0P1

p ∀ θ: ð7Þ

Thus, in this space, Q is a disk with radius 2
ffiffiffiffiffiffiffiffiffiffiffi
P0P1

p
. More

rigorously, as discussed in Supplemental Material [19], this
constraint follows from Sylvester’s criterion for positive
semidefiniteness [48]. We thus find that, remarkably, albeit
it is possible to detect a state as nonclassical using the
values of P0 and P1, if using these values it is not possible
to detect the state as nonclassical, then it will still not be
possible to do so adding knowledge about X01 and Y01.
With such analysis, we are thus able to predict which
observables will be useful for the purpose of identifying
nonclassicality, which helps to devise more efficient
experimental platforms.
In other cases, for example, when one knows ðP0; P2Þ

but not P1, the associated coherence terms do provide
information about nonclassicality. This can be traced down
to the boundary of C in the space ðP0; P2Þ containing
nonpure states and to the nonconvexity of the set of
coherent states in the same space. Remarkably, in this
case, adding knowledge of R02 allows one to recognize as
nonclassical states in the nonconvex region of the space

ðP0; P2Þ. Further discussion of this aspect is provided in
Supplemental Material [19].
These case studies highlight the nontrivial features of

nonclassical coherences that set them apart from previously
known nonclassicality criteria [18,41].
Robustness of nonclassical coherences.—To probe the

robustness of the criteria, we also study how different
degrees of attenuation and thermal noise affect our capacity
to detect the nonclassicality of coherent states. Figure 1
shows attenuated superpositions in two-dimensional sub-
spaces. In Figs. 1(a) and 1(b), we plot the points corre-
sponding to attenuation of ð1= ffiffiffi

2
p Þðj0i þ j1iÞ with

transmittivities T ∈ ½0; 1�. We find that nonclassicality
can be certified using ðP0; X01Þ for T > 0.73, while in
ðP1; X01Þ for T > 0.69. In Fig. 1(d), we plot attenuated
states obtained from ð1= ffiffiffi

2
p Þðj1i þ j2iÞ. In this case, we

FIG. 2. Boundary of C in the subspace ðP0; P1; X01Þ. The
dashed red line represents the attenuated states obtained from
ð1= ffiffiffi

2
p Þðj0i þ j1iÞ, for different degrees of attenuations. The

orange surfaces correspond to C in this subspace. The vertical
orange surface corresponds to the criterion in the ðP0; P1Þ
subspace, while the other surface is the one bounding the value
of jX01j for each value of ðP0; P1Þ. Nonclassicality is, thus,
certified by checking that a point lies beyond at least one of these
two surfaces.

FIG. 1. Classical regions in the spaces ðX01; P0Þ, ðX01; P1Þ,
ðX01; X02Þ, and ðX01; X12Þ. Solid blue lines trace the boundary of
C. Dashed orange lines are the set of coherent states of the form
j ffiffiffi

μ
p i for μ∈R. Outer gray lines are the boundary of Q. In

ðX01; PiÞ, the solid red line corresponds to ð1= ffiffiffi
2

p Þðj0i þ j1iÞ
attenuated through a beam splitter with transmissivity T ¼ jtj2,
for T ∈ ½0; 1�. The two black dots joined by this line correspond to
the states jþi and j0i. The green dot marks the transmissivity
corresponding to a transition between classicality and nonclassi-
cality and corresponds to T ≈ 0.73 in ðX01; P0Þ and T ≈ 0.69 in
ðX01; P1Þ, respectively. We also show the results of attenuating
ð1= ffiffiffi

2
p Þðj1i þ j2iÞ in the ðX01; X12Þ space. The nonclassicality

threshold, again marked with a green dot, corresponds to
T ≈ 0.84. The cyan dots at the bottom of the lowermost figure
correspond to the one-dimensional nonclassicality threshold for
the coherence term X01, corresponding to X01 ≈�0.86.

FIG. 3. Nonclassicality of ð1= ffiffiffi
2

p Þðj0i þ j1iÞ (left) and
ð1= ffiffiffi

2
p Þðj0i þ j2iÞ (right) after attenuation with transmissivity

T ≡ jtj2 and thermalization with average boson number n̄. Each
line corresponds to a different two-dimensional nonclassicality
criterion, separating the lower-right region of nonclassicality
from the rest.
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find the nonclassicality threshold in the space ðX01; X12Þ to
sit at around T ≈ 0.84. We furthermore analyze the robust-
ness of states obtained from ð1= ffiffiffi

2
p Þðj0i þ j1iÞ and

ð1= ffiffiffi
2

p Þðj0i þ j2iÞ when subject to both attenuation and
thermal noise. As shown in Figs. 2 and 3, different
combinations of observables result in different nontrivial
nonclassicality criteria, highlighting how the hardness in
witnessing nonclassicality depends on the measured
observables.
Conclusions.—We showed how to leverage individual

off-diagonal elements of the density matrix in the Fock-
state basis to assess P nonclassicality and how to pair these
with Fock-state probabilities to detect even larger classes of
nonclassical states. This paves the way for a more thorough
understanding of the relation between P nonclassicality and
the widely studied resource theories of quantum coher-
ence [20].
These criteria can be directly implemented experimen-

tally, by simply measuring the relevant observables and
checking whether the obtained expectation values violate
the given criteria. Such a protocol can be implemented with
state-of-the-art technology, for example, in photonics [49],
trapped ions [44], superconducting [45], and electro-
mechanical [46] platforms. Enhanced capabilities of
detecting nonclassical states have several applications,
for example, for quantum metrology [44,50,51] and for
quantum communication and computation [52,53]. Our
results highlight the nontrivial way the nonclassicality of
states is encoded in the coherences: While measuring
coherences provides useful information in many situations,
there also exist scenarios where all the information about
nonclassicality is already encoded in the Fock-state prob-
abilities. This leaves open the stimulating question of
characterizing the scenarios where coherent terms do or
do not provide additional predictive power.
Our Letter also paves the way for a more thorough

understanding of nonclassicality detection with multimode
coherences over diverse platforms [54–59]. Such criteria
would provide enhanced detection schemes for platforms
generating entangled states, imposingmore lenient demands
on those sources than entanglement. Another natural venue
of further study is to devise criteria for quantum non-
Gaussianity [40,60] and study the role of coherences in that
context, which remains not fully understood.
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