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Filamentous cyanobacteria can show fascinating examples of nonequilibrium self-organization, which,
however, are not well understood from a physical perspective. We investigate the motility and collective
organization of colonies of these simple multicellular lifeforms. As their area density increases, linear
chains of cells gliding on a substrate show a transition from an isotropic distribution to bundles of filaments
arranged in a reticulate pattern. Based on our experimental observations of individual behavior and
pairwise interactions, we introduce a nonreciprocal model accounting for the filaments’ large aspect ratio,
fluctuations in curvature, motility, and nematic interactions. This minimal model of active filaments
recapitulates the observations, and rationalizes the appearance of a characteristic length scale in the system,
based on the Péclet number of the cyanobacteria filaments.

DOI: 10.1103/PhysRevLett.131.158303

Collective organization is a defining feature of living
matter. It has received vivid attention [1–8] for its appli-
cations in the life sciences [9,10], and as an example of how
nonequilibrium forces can drive flows of matter and energy
[11,12]. The first seminal studies of active matter treated
the motion of pointlike particles [1,2,4]. Nonreciprocal
interactions between even such simple objects, with a
single orientation, allow access to states impossible in
equilibrium systems [7], and rodlike motile particles extend
the range of such emergent behavior [8]. Long, flexible
filaments, whose orientation varies along their length, offer
opportunities to study different classes of active matter
[13–24]. With many possible interaction points per fila-
ment, correlations can spread over long distances, opening
the door to novel behavior [21,25–30] whose complete
understanding remains lacking.
An important example of active matter, cyanobacteria are

among the Earth’s most abundant and ancient organisms
[31,32]. They evolved the original mechanisms of photo-
synthesis and perform nearly all nitrogen fixation in marine
environments [33,34]. Filamentous cyanobacteria also
straddle the boundary between single and multicellular
organisms; they grow into long chains of cells through
“filamentation,” perhaps the oldest form of multicellula-
rity [35,36]. Many species live on surfaces, including

stromatolites [35,37], and move by gliding [38–40].
Colonies can develop complex structures of closely
bundled filaments, such as reticulate patterns (Fig. 1), over
hours or days [28,41,42]. Cell density is thought to be a
trigger of such pattern formation [28,41], but this link has
never been conclusively demonstrated. Found widely,
including in Archean fossils [32], Antarctic lakes [43],
and hot springs [44], these patterns can template more
complex 3D morphogenesis [41,43]. They also provide
rigidity [41] and enable collective mechanical responses,
like rapid shape changes, to external cues [44,45].
Despite their importance to the development of complex

life, and for, e.g., carbon-neutral biofuels [46], no general
mechanism has been identified to rationalize the collective
behavior of filamentous cyanobacteria. Here, we demon-
strate that the emergent patterns of their colonies can be
apprehended as the collective result of independently
moving actors with simple interactions. Distinctive features
of filamentous cyanobacteria, such as their large aspect
ratio and the tendency of a filament to follow the trail laid
down by its head, enable the accurate prediction of the
critical density and emergent length scale associated with
collective ordering.
We investigate Oscillatoria lutea, a typical strain of

filamentous cyanobacteria, consisting of simple (non-
branching, nonheterocystous) chains of cells. Cultivation
and measurement methods are provided as Supplemental
Material [47]. In our cultures, the filaments have well-
defined widths σ ¼ 4.2� 0.2 μm [52] and lengths
L ¼ 1.5� 0.5 mm. In all cases here, error ranges report
standard deviations.
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In relative isolation, with area densities ρ ≃ 1 mm−2,
filaments move at speeds v0 ¼ 3.0� 0.7 μms−1, as shown
in Fig. 2(a). They glide along smoothly curving paths,
which we characterized by tracking the orientation θ of
the tangent to each filament’s midpoint through time
(Supplemental Material, movie 1 [47]). The curvature
κ ¼ dθ=ds of the path sðtÞ traced by any filament fluctu-
ates slowly; the autocorrelation of κ is well described by
an exponential relaxation with autocorrelation time
τ ¼ 470� 290 s (Fig. S1 [47]). Isolated filaments are
biased towards clockwise motion, as in related species
[38,39,52]. However, from densities as low as ρ ¼ 6 and up
to 49 mm−2 filaments adopt straighter shapes on average
(Fig. S2 [47]). These distributions of curvatures peak
around zero, with standard deviation δκ ¼ 340� 40 m−1.
To quantify the interactions between filaments, we

observe cases where the head (leading end) of one filament
approaches and intersects another filament. In most such
pairwise interactions there is no direct effect, rather the
filaments simply pass over or under each other without
changing paths. However, about 4% of the time the incident
filament is deflected, turning to travel alongside the other
filament, which typically remains unperturbed. Aligning
interactions only happen for small angles of incidence
[Fig. 2(b)], and result in the two filaments moving parallel
or antiparallel, depending on the angle of approach. After
aligning, the filaments track each other for some distance,
on average 430 μm, before one splits away. These inter-
actions are fundamentally nonreciprocal [7], as the align-
ment response is path dependent [53].
The pairwise interactions promote the formation of

bundles of aligned filaments, which can organize denser
colonies into a higher-level architecture (Fig. 1). We
confirmed the local nematic nature of this ordering by
observing the motion of nearby filaments along one bundle,
as in Fig. 1(c) and Supplemental Material, movie 2 [47].
All filaments in the bundle are well aligned, with approx-
imately equal fractions [223 versus 282 filaments;

Fig. 2(c)] traveling in either direction. Between the bundles
is a dilute “gas” of more randomly oriented filaments, simi-
lar in appearance to disordered colonies at lower densities.
Some of these behaviors, such as nematic alignment and

the tendency to form dynamic bundles and networks, are
reminiscent of those of microtubules at an interface
[10,27,54].However, there are also conspicuous differences.
Critically, the average filament length is comparable to other
characteristic lengths of this system, such as the filament’s
radius of curvature, or the emergent pattern lengthscale.
Hence, there is no a priori clear separation of scales, and
we will show that the elongated nature of the cyano-
bacteria filaments affects the nature of their collective
self-organization.
A benefit of this perspective is that it leads directly to a

relatively simple model that can be informed in all its
parameter choices by experimental observations. We treat
the cyanobacteria as motile one-dimensional chains of
pointlike beads [Fig. 2(d)], as befits their large aspect
ratio, L=σ > 100. For simplicity, all chains have length
L ¼ 1.5 mm, and representative disorder is introduced via
their motion. Their speeds are constant in time, but drawn
from a normal distribution with average v0 ¼ 3 μms−1 and
standard deviation 0.7 μms−1, matching experimental val-
ues [Fig. 2(a)]. The position ri;α of bead α of chain i follows
the track laid out by its head, so that ri;αðtÞ ¼ ri;α−1ðt − ΔtÞ.
At each time step, of duration Δt, the end bead is removed
from the tail of each chain, and a new bead is added at its
head, displaced by distance viΔt at angle θi (Fig. S4).
Similar models have been applied to isolated filaments [23]
and filaments on lattices [55]. Although this system has
some similarities to active polymers [14,16–18,56], those
lack a unique curvature autocorrelation time, as each
polymer segment fluctuates independently; in contrast,
the fluctuations and curvature of our chains are solely
determined by their heads.
Motivated by models of active nematic particles used

to simulate microtubules [27,57], C. elegans [58] and

30 m10 mm(a) (b) (c)500 m

FIG. 1. A colony of O. lutea at density ρ ¼ 53 mm−2 shows (a) a reticulate pattern, with (b) the local alignment of filaments within
bundles, and (c) filament motion (arrows) that is predominantly parallel or antiparallel to neighbors.
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Pseudanabaena sp. [59], we now introduce a model of
interacting active chains, appropriate to the behavior of
filamentous cyanobacteria. Here, the orientation θi and
angular velocity ωi of the head of each chain i evolves by a
modified Ornstein-Uhlenbeck process

dωi

dt
¼ −

1

τ
½ωi − JF ðθiÞ� þ

ffiffiffiffiffiffiffiffiffi

2Dω

p

ξiðtÞ; ð1Þ

dθi
dt

¼ ωi − JF ðθiÞ; ð2Þ

where τ is the curvature autocorrelation time, J is an inter-
action strength, Dω is a diffusion coefficient, and ξiðtÞ
introduces Gaussian white noise with zero mean and
unit variance. Dω is not directly accessible experimentally,
but is linked to other parameters. Without any filament-
filament interactions, Eq. (1) produces a normal distribution
of angular velocities with zero mean and variance
hω2i ¼ Dωτ. For chains with speed v0 this translates
into a curvature distribution with standard deviation
δκ ¼

ffiffiffiffiffiffiffiffiffi

hω2i
p

=v0. Hence, Dω ¼ ðv0δκÞ2=τ. Finally, the

interactions are modeled by F ðθiÞ ¼ ð1=NijÞ×
P

j∼ið∂=∂θiÞUðθi; θjÞ, using a nematic Lebwohl–Lasher
potential, U ¼ − cos ½2ðθi − θjÞ�, averaged over the Nij

chains within an interaction range d of the head of chain
i, where θj is the orientation of the nearest bead on chain j
(see Fig. 2(d)).
The model parameters were matched to experimental

values of relatively isolated cyanobacteria, and fine-tuned
based on the collective behavior at higher densities. Unless
otherwise stated, we set τ ¼ 480 s, δκ ¼ 200 m−1 (giving
Dω ¼ 7.5 × 10−10 s−3) andd ¼ 5 μm, close to the observed
values of 470 s, 340 m−1 and the filament diameter of
4.2 μm, respectively. The interaction strength, J¼0.006s−1,
was chosen by considering filaments meeting at an angle θ.
On average, the effects of interactions are comparable if the
incident filament is either deflected by a relative angleΔθ=θ,
or by the whole angle θwith probability palignðθÞ. As shown
in Fig. 2(b), in this sense J gives a similar average response
to the observed interactions.
Experimentally, colonies of cyanobacteria filaments are

disordered at low density, but show emergent patterns at

(d)

(a) (b)

(c)

FIG. 2. Filament behavior. (a) The distribution of experimen-
tally observed gliding speeds (blue) is well fit by a Gaussian (red,
used for simulations). (b) Histogram showing how the alignment
probability (left axis, blue bars) and interaction frequency
(right axis, green circles) depend on incidence angle θ. The data
are experimental; see Supplemental Material [47], Sec. II—
Interacting filaments, for more details. In the model, an incident
chain is deflected on average by the relative angle Δθ=θ (black
line). (c) In bundles, the directions of motion have a nematic
distribution: a polar histogram compares experimental (blue) and
simulated (red) cases. (d) Schematic of modeled interaction:
when a chain’s head is within distance d of another chain, it
experiences an aligning effect.

FIG. 3. Collective behavior and order-disorder transition.
Panels (a)–(d) show micrographs of colonies at densities
ρ ¼ 25, 31, 42, and 59 mm−2, respectively. Panels (e)–(h) show
snapshots of simulations at comparable densities of ρ ¼ 24, 31,
41, and 59 mm−2. To avoid boundary effects, the simulated
domains had sides 4.5× larger than shown; panels are cropped
to match the micrograph size. (i) Order parameter hSi, averaged
over 1 mm2 blocks covering the experimental (blue) or simu-
lated (red) domain; see Supplemental Material, Fig. S3 [47] for
more details. Error bars and shading give the standard deviation
of hSi over the blocks. At low ρ the filaments are randomly
aligned, but locally nematic bundles and a reticulated structure
emerge above ρ ∼ 40 mm−2.
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higher densities, Figs. 3(a)–3(d). The simulated chains
order in a similar way, Figs. 3(e)–3(h), with reticulated
structures appearing at higher ρ. Once formed, these
structures remain relatively static, and the emergence of
the ordered state in the model is demonstrated in the
Supplemental Material, movie 3 [47]. We quantify local
order in the steady-state by the 2D nematic order parameter
[60–63]. For this, each experimental or simulated system is
divided up into blocks of size l ¼ 1 mm. At this scale the
filament density is relatively homogeneous, but the blocks
are large enough to have good statistics. The local order
parameter S ¼ hcosð2θ̂Þi is measured for filament orienta-
tions θ̂ taken with respect to the local nematic director (see
Supplemental Material [47]). We then calculate hSi as a
block average, which can quantify the emergence of local
order, even in a globally heterogeneous system [62,64].
Both experiments and simulations show low nematic

order at low densities. At higher ρ, the appearance of
collective structures is captured by a sharp increase in hSi,
as shown in Fig. 3(i). Experimentally, the transition from a
disordered state, with hSi ≃ 0.2, to an ordered state of
hSi ≃ 0.7 is seen at a critical density of ρ ¼ 40–50 mm−2.
Simulations show a similar response, and demonstrate that

density inhomogeneities are correlated with the nematic
ordering (Fig. S6 [47]). In no case is there any clear laning
of filaments [see Figs. 1(c), 2(c)], in contrast to stiff active
rods [8,65]. Varying the model parameters somewhat does
not change the qualitative nature of the ordering transition,
but does affect the critical value of ρ. This quantifies prior
speculation of a density-driven ordering transition [28,41],
and enables predictions.
For a gas of weakly interacting filaments, can we predict

when interactions will become important enough to lead to
collective behavior? For simplicity, consider filaments of
density ρ and speed v0. Filaments interact when they first
cross, at some local tangent angle θ anywhere along a
length L. Averaging over all configurations, filaments thus
present a mean cross-sectional length L̄ ¼ hL sin θi ¼
2L=π to each other. As one filament advances, it then
encounters others on average at frequency f ¼ L̄ρv0 ¼
2Lρv0=π. Experimentally, only a small fraction a of
interactions cause alignment, so the rate of filament order-
ing scales as af. Aligned filaments can also split up, which
we assume happens randomly at rate b. Under these
representative assumptions, interactions should become
important when the rates of filament alignment and breakup

FIG. 4. Emergence of large-scale patterning. Finite-size scaling of the block-average order parameter hSi was investigated in
(a) simulations and (b) experiments, by varying the block size l for the same data shown in Fig. 3. The power-law decay at low density
indicates a disordered, isotropic state. The emergence of structures at high density is marked by a plateau lasting until l reaches the size
of the emerging structures, which we term the crossover length scale l�, after which a more rapid decay is observed. (c) For different
model parameters l� can be compared to the characteristic scale at which activity and fluctuations balance, l�. Snapshots show the
resulting patterns for some simulations with (d): ρ ¼ 83 mm−2, Dω ¼ 1.2 × 10−9 s−3, τ ¼ 480 s. (e): ρ ¼ 76 mm−2,
Dω ¼ 7.5 × 10−10 s−3, τ ¼ 1920 s. (f): ρ ¼ 83 mm−2, Dω ¼ 7.5 × 10−10 s−3, τ ¼ 320 s. (g): ρ ¼ 69 mm−2, Dω ¼ 1.7 × 10−9 s−3,
τ ¼ 480 s, and (h) for filaments growing naturally under typical incubation conditions. The characteristic scales of the patterns are
shown by red circles of radius l�. The scale bar in (d) also applies to (e)–(g).
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balance, af ≃ b, and this cross-over condition defines a
characteristic density ρc ¼ πb=ð2aLv0Þ. Using experimen-
tal values, a ¼ 0.04 and b ¼ 0.007 s−1 (see Supplemental
Material [47]), predicts ρc ∼Oð50Þ mm−2. A disordered
gas of filaments would be expected for densities ρ ≪ ρc,
with ordered states starting to appear at densities ρ ≈ ρc.
This prediction agrees well with the density of the order-
disorder transition shown in Fig. 3.
We can rationalize the emergent length scale of the

reticulate pattern as a signature of the balance struck
between activity and fluctuations. By nondimensionalizing
Eqs. (1) and (2), the ratio between the angular rate of
change and diffusion defines a Péclet number,
Pe ¼ v0=ðl

ffiffiffiffiffiffiffiffiffi

Dωτ
p Þ, where l is some reference length. In

the steady state, the nonequilibrium probability fluxes
associated with active motion and curvature fluctuations
will strike a balance, determining a specific length scale l�,
corresponding to Pe ¼ 1, as the smallest scale over which
patterns can emerge. Using Dω ¼ v20δκ

2=τ we predict
l� ¼ v0ðDωτÞ−1=2 ¼ 1=δκ ≈ 5 mm.
To substantiate this prediction, we perform a scaling

analysis [61,62] of how the block-averaged order parameter
hSi depends on the block size l. Figures 4(a) and 4(b) show
the results for simulations and experiments. At low den-
sities we see the power-law decay expected for a disordered
system [62]. With increasing ρ, the experimental data are
noisier, but potentially show structure developing more
continuously than in the simulations. For ρ > 40 mm−2,
hSðlÞi develops two distinct regimes: a plateau at low l,
reflecting the local order within bundles, and a faster decay
at large l. From the position of the crossover between these
responses we extract a length scale l� [Fig. 4(c), methods in
Supplemental Material [47] ]. The drop in hSi above l� is
attributed to bundles with different orientations appearing
within the same block.
In simulations, we explore the dependence of l� on the

model parameters, by varying τ, Dω, and ρ. Some steady-
state snapshots are shown in Figs. 4(d)–4(g). While the fine
details of the patterns vary, l� is always consistent with the
radius of the emergent structures, with no significant
dependence on ρ. As shown in Fig. 4(c), this feature size
generally matches the characteristic length l� ¼ 1=δκ
predicted via Pe. In O. lutea, the radius of the structures
of dense colonies is l� ¼ 3.5� 0.6 mm, see Fig. 4(h),
consistent with l� ¼ 1=δκ ¼ 2.9 mm. Repeating measure-
ments on the related species Kamptonema animale
(see Supplemental Material [47]; l� ¼ 2.1� 0.4 mm,
l� ¼ 1.7� 0.1 mm) further confirms this correspondence
of length scales.
Summarizing, we studied colonies of filamentous cyano-

bacteria and their collective organization. The filament
length is comparable to other scales in this problem (e.g.,
curvature) and can couple with them; one cannot assume

separation of scales. A nonequilibrium theoretical model
accounting for fluctuations, large aspect ratios, motility,
and nematic alignment reproduces the structure of reticu-
late patterns seen in the lab [41] and nature [42–44]. Our
results thus point to a new class of active matter charac-
terized by the following features: (i) Elongated filaments
with position-dependent orientation and multiple interac-
tion sites along each filament. (ii) Gliding motility induced
by polar forces [24], unlike extensile or contractile micro-
tubule-kinesin systems [54]; and (iii) path-tracking dynam-
ics of the body following its head, subject to fluctuations
and active motion, which are ultimately responsible for the
reticulate pattern and length scale selection. Cyanobacteria
are an important class of microbial life, and among the
earliest form of multicellular organisms. We note that the
parameters governing their self-organization identified here
are evolutionarily selectable traits, influencing collective
responses [44,45], mechanical properties [41], and 3D
morphologies [41,43], and can inform the study of the
fossil record [32,42].

We thank Maike Lorenz (SAG Göttingen) for support
with cyanobacteria cultures, Stefan Karpitschka (MPIDS)
and Jack Paget (Loughborough) for discussions, and
Graham J. Hickman (NTU) for microscopy support.
Microscopy facilities were provided by the Imaging
Suite at the School of Science and Technology at
Nottingham Trent University. Numerical calculations were
performed using the Sulis Tier 2 HPC Platform funded by
EPSRC Grant No. EP/T022108/1 and the HPC
Midlandsþ consortium. We gratefully acknowledge use
of the Lovelace HPC service at Loughborough University.
M. K. F. was partly sponsored by the Malawi University of
Science and Technology. This work was supported by
the Max Planck Institute for Dynamics and Self-
Organization (MPIDS).

M. K. F. and J. C. contributed equally to this work.

*m.g.mazza@lboro.ac.uk
†lucas.goehring@ntu.ac.uk

[1] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and
O. Shochet, Novel Type of Phase Transition in a System
of Self-Driven Particles, Phys. Rev. Lett. 75, 1226
(1995).

[2] J. Toner and Y. Tu, Long-Range Order in a Two-
Dimensional Dynamical XY Model: How Birds Fly
Together, Phys. Rev. Lett. 75, 4326 (1995).

[3] R. A. Simha and S. Ramaswamy, Hydrodynamic
Fluctuations and Instabilities in Ordered Suspensions of
Self-Propelled Particles, Phys. Rev. Lett. 89, 058101
(2002).

[4] S. Ramaswamy, The mechanics and statistics of active
matter, Annu. Rev. Condens. Matter Phys. 1, 323 (2010).

PHYSICAL REVIEW LETTERS 131, 158303 (2023)

158303-5

https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.4326
https://doi.org/10.1103/PhysRevLett.89.058101
https://doi.org/10.1103/PhysRevLett.89.058101
https://doi.org/10.1146/annurev-conmatphys-070909-104101


[5] M. C. Marchetti, J.-F. Joanny, S. Ramaswamy, T. B.
Liverpool, J. Prost, M. Rao, and R. A. Simha, Hydro-
dynamics of soft active matter, Rev. Mod. Phys. 85, 1143
(2013).

[6] J. Elgeti, R. G. Winkler, and G. Gompper, Physics of
microswimmers–single particle motion and collective
behavior: A review, Rep. Prog. Phys. 78, 056601
(2015).

[7] M. Fruchart, R. Hanai, P. B. Littlewood, and V. Vitelli, Non-
reciprocal phase transitions, Nature (London) 592, 363
(2021).
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