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We study the active work fluctuations of an active Ornstein-Uhlenbeck particle in the presence of a
confining harmonic potential. We tackle the problem analytically both for stationary and generic
uncorrelated initial states. Our results show that harmonic confinement can induce singularities in the
active work rate function, with linear stretches at large positive and negative active work, at sufficiently
large active and harmonic force constants. These singularities originate from big jumps in the displacement
and in the active force, occurring at the initial or ending points of trajectories and marking the relevance of
boundary terms in this problem.
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Large deviation theory has a profound impact in stat-
istical physics [1,2]. In nonequilibrium systems, where
probability measures on configuration spaces are not
naturally available, it provides an analog of the usual
equilibrium free-energy description. Given an extensive
physical observable Wτ computed by cumulating a large
number τ of microscopic events, if a large deviation
principle holds, then the asymptotics of the probability
distribution PðWτ=τ ¼ wÞ can be characterized by the rate
function IðwÞ ¼ −limτ↑∞ð1=τÞ lnPðWτ=τ ¼ wÞ [3,4]. The
probability distribution is dominated by small fluctuations
around the minimum of I, which in this sense plays a role
similar to a free-energy.
A modern important topic is the occurrence of singu-

larities in rate functions, which can be seen as the hallmarks
of phase transitions [2,5]. They appear in different contexts,
such as in studies of heat exchanges, diffusive transport, and
entropy production [6–20], and in some cases have been
interpreted as due to a condensation mechanism [21–28]. If τ
is a time interval, the rate function can provide a generalized
thermodynamic description based on the counting of tra-
jectories, and the singularity would correspond to a phase
separation in trajectory space [29–31].
Active matter systems [32], with their inherent non-

equilibrium character, offer a new field for applications of
large deviation theory and investigations on dynamical
phase transitions. In these systems, available energy
sources are employed to produce spontaneous motion or
work on the environment. They are characterized by a
surprisingly rich phenomenology, including new phenom-
ena like motility induced phase separation (MIPS) [33] or
spontaneous flow [32], and also concerning fluctuation
properties [34–43].
A central quantity for the description of dynamical

transitions in active matter models is the active work.
This quantity is defined as the time-average of the power of
a particle’s propulsion force and measures the conversion of

self-propulsion into directed motion [44]. Active work
enters the definition of efficiency in active engines [44],
i.e., devices which exploit active nonequilibrium dynamics
to produce useful work [45], as the effective power input.
These devices either cyclically operate between different
thermal baths [46–48] or exploit ratchet potentials [49], and
already have several experimental realizations [46,47].
In this respect, active work deserves deeper investigation,
not only in terms of mean values but also at the level
of fluctuations, even in simple but significant setups.
Numerically, in dilute systems of active Brownian particles,
the active work rate function was shown to be singular [35],
with a linear tail associated to trajectories of a particle being
dragged by a cluster moving oppositely to its propulsion
force. Successive studies have revealed a very rich structure
for the phase diagram in trajectory space [50–52]. In
experiments, rate functions for quantities analogous to
the active work were investigated for polar beads embedded
in two-dimensional granular layers [53,54].
Rigorous analysis of simple models can help to under-

stand the emergence of dynamical transitions, and in
particular to elucidate the role of self-propulsion. In this
Letter we consider a single active Ornstein-Uhlenbeck
particle (AOUP) [55–64] and investigate analytically the
active work fluctuations in the presence of a confining
harmonic potential. AOUP systems share many of the
relevant properties of interacting active particle models,
including MIPS. Restricting to one particle description, a
confining potential can mimic the trapping created by other
particles at finite densities [55,65,66]. We will show that,
differently from the case of a free AOUP [67], harmonic
confinement can induce singularities in the active work rate
function, with linear stretches at large active work. These
singularities are found both for stationary and generic
uncorrelated initial states at sufficiently large active and
harmonic force constants. They originate from big jumps in
the displacement and in the active force, occurring at the
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initial or ending points of trajectories and marking the
relevance of boundary terms in this problem.
The unidimensional active particle model that we study

is defined via the Ornstein-Uhlenbeck process

�
γṙðtÞ ¼ aðtÞ − krðtÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2γkBT
p

ξðtÞ;
ȧðtÞ ¼ −νaðtÞ þ F

ffiffiffiffiffi
2ν

p
ηðtÞ; ð1Þ

where rðtÞ is the position of a unit-mass particle in a
harmonic potential of elastic constant k, aðtÞ represents a
self-propulsion force with amplitude F and decay rate ν, γ
and T are the friction coefficient and the bath temperature,
and ξðtÞ and ηðtÞ are two independent standard white
noises. One has ν≡ kBT=γd2 with d a length proportional
to the particle’s diameter [68]. We will vary the adimen-
sional elastic constant κ ≡ ðkd2Þ=ðkBTÞ and the Péclet
number Pe≡ ðFdÞ=ðkBTÞ, which quantify the strength of
the potential and of the active force with respect to thermal

fluctuations [68,69]. Without loss of generality, we set
γ ¼ 1, kBT ¼ 1, and d ¼ 1.
We examine the probability distribution of the active

work Wτ defined by the formula [70]

Wτ ≡
Z

τ

0

aðtÞṙðtÞdt:

Our goal is to evaluate the rate function
IðwÞ ¼ −limτ↑∞ð1=τÞ lnPðWτ=τ ¼ wÞ. The probability
distribution PðWτ=τ ¼ wÞ can be expressed by the path
integral

PðWτ=τ ¼ wÞ ¼
Z

δðWτ − wτÞPτDrDa

with path probability

Pτ ∝ exp

�
−
1

2
ð rð0Þ að0Þ ÞΣ−1

0

�
rð0Þ
að0Þ

��
exp

�
−
Z

τ

0

�½ṙðtÞ − aðtÞ þ κrðtÞ�2
4

þ ½ȧðtÞ þ aðtÞ�2
4Pe2

�
dt

�
:

Pτ combines the distribution of the initial values rð0Þ and
að0Þ with the Onsager-Machlup weight [71]. We consider
Gaussian initial data with mean zero and joint covariance
matrix Σ0. In particular, we focus on a nonstationary
uncorrelated initial condition with standard deviations σr
for rð0Þ and σa for að0Þ, and on the stationary case given
by [72]

Σ0 ¼
 

1þκþPe2
κð1þκÞ

Pe2
1þκ

Pe2
1þκ Pe2

!
: ð2Þ

An operative definition of the rate function I
requires us to look first at a discrete-time problem with
time step ϵ, and then to take the continuum limit ϵ↓0. In
fact, we determine I via the double limit IðwÞ ¼
−limϵ↓0limN↑∞ð1=NϵÞ lnPðWN=Nϵ ¼ wÞ, where WN ≡
1
2

P
N
n¼1ðan þ an−1Þðrn − rn−1Þ with rn ≡ rðnϵÞ and an ≡

aðnϵÞ is the discretized active work up to time Nϵ.
The discrete-time problem is tackled by computing the
cumulant generating function (CGF) ð1=NÞ lnheλWN i
of WN at large N. The Legendre transform of
limN↑∞ð1=NÞ lnheλWN i with respect to the additional
variable λ is expected to be the discrete-time rate
function JðwÞ ¼ −limN↑∞ð1=NÞ lnPðWN=N ¼ wÞ. We
have IðwÞ ¼ limϵ↓0 JðϵwÞ=ϵ.
At small ϵ, the trajectory fðr0; a0Þ;…; ðrN; aNÞg follows

a multivariate Gaussian law with mean zero and covariance
matrix ΣN [73]. Regarding WN as a quadratic functional of
fðr0; a0Þ;…; ðrN; aNÞg with coefficient matrix 1

2
MN , a

standard Gaussian integral gives

lnheλWN i ¼ −
1

2
ln detðΣ−1

N − λMNÞ

− N lnð2ϵPeÞ − 1

2
ln detΣ0

if Σ−1
N − λMN is positive definite and lnheλWN i ¼ þ∞

otherwise. Σ−1
N − λMN is the block tridiagonal matrix

Σ−1
N − λMN ¼

0
BBBBBBBB@

L V⊤

V U . .
.

. .
. . .

. . .
.

. .
.

U V⊤

V R

1
CCCCCCCCA

ð3Þ

with 2 × 2 blocks L≡ Σ−1
0 þ S⊤D−2Sþ λEþ,

U≡D−2þS⊤D−2S, R≡D−2 − λEþ, V ≡ −D−2S − λE−,

S≡ ð1−κϵ
0

ϵ
1−ϵÞ, D≡ ð

ffiffiffiffi
2ϵ

p
0

0
Pe
ffiffiffiffi
2ϵ

p Þ, and E� ≡ 1
2
ð 0
�1

1
0
Þ. The

matrix (3) differs from a Toeplitz matrix by the extreme
diagonal blocks L containing Σ0 and R, which play an
important role in determining positive definiteness. We
denote by TN the bulk Toeplitz matrix obtained from
Σ−1
N − λMN by deleting all contour blocks.
For those values of λ that make Σ−1

N − λMN positive
definite at large N, the asymptotic CGF depends only on
the bulk matrix TN . In fact, the results of [74] for generic
quadratic functionals based on Szegö theorem for block
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Toeplitz matrices [77] show that limN↑∞ð1=NÞ lnheλWN i ¼
φðλÞ with

φðλÞ≡ −
1

4π

Z
2π

0

ln detFλðθÞdθ − lnð2ϵPeÞ

and Hermitian matrix FλðθÞ≡ Ve−iθ þU þ V⊤eiθ. For
Σ−1
N − λMN being positive definite it is necessary and

sufficient that both TN and its Schur complement

SN ≡
�
L − V⊤ðT−1

N Þ11V −V⊤ðT−1
N Þ1NV⊤

−VðT−1
N ÞN1V R − VðT−1

N ÞNNV
⊤

�

are positive definite, ðT−1
N Þij being the 2 × 2 block of T−1

N in
the row i and column j. The matrix TN is positive definite if
FλðθÞ has the same property for all θ [74]. This introduces
a first constraint on λ, which defines the primary do-
main ðl̃−; l̃þÞ of φ. It can be shown [74] that
limN↑∞SN ¼ ðLλ

0
0
Rλ
Þ, Lλ and Rλ being 2 × 2 symmetric

matrices determined by the extreme diagonal blocks L and
R and by FλðθÞ, whose explicit expressions in the limit ϵ↓0
is reported in [73]. Then, a second constraint on λ comes
from the requirement that Lλ and Rλ are positive de-
finite. Denoting by ðl−; lþÞ the interval of λ for which
both constraints are fulfilled, i.e., the effective domain of φ,
we get limN↑∞ð1=NÞ lnheλWN i ¼ φðλÞ for λ∈ ðl−; lþÞ and
limN↑∞ð1=NÞ lnheλWN i ¼ þ∞ for λ ∉ ½l−; lþ�. We have
l̃− ≤ l− < 0 < lþ ≤ l̃þ.
We now compute the discrete-time rate function as the

Legendre transform JðwÞ ¼ supλ∈ ðl−;lþÞfwλ − φðλÞg.
Although natural, this formula cannot be justified by the
Gärtner-Ellis theorem [3,4] since, in general, φ is not steep
at the boundary of the effective domain. In fact, the
Gärtner-Ellis theorem requires that limλ↓l−φ

0ðλÞ ¼ −∞
and limλ↑lþ φ

0ðλÞ ¼ þ∞, but this fails when l− > l̃− or

lþ < l̃þ. The formula for J can be demonstrated via a time-
dependent change of probability measure [74]. From a
mathematical point of view, the lack of steepness is the
hallmark of a dynamical phase transition.
Finally, we take the continuum limit. Notice that l̃�, l�,

and φðλÞ depend on ϵ. Cumbersome calculations summa-
rized in [73] yield

IðwÞ ¼ lim
ϵ↓0

JðϵwÞ
ϵ

¼ sup
λ∈ ðλ−;λþÞ

fwλ − ϕðλÞg ð4Þ

with ϕðλÞ≡ limϵ↓0 φðλÞ=ϵ and λ� ≡ limϵ↓0 l�. The asymp-
totic CGF ϕ is found to be

ϕðλÞ ¼ 1þ κ

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κÞ2 − 4Pe2λð1þ λÞ

q
ð5Þ

and the primary domain is

λ̃� ≡ lim
ϵ↓0

l̃� ¼ −
1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
1þ κ

Pe

�
2

s
: ð6Þ

An explicit formula for the boundary points λ� of the
effective domain is not available.
According to Eq. (5), the function ϕ is not steep on the

effective domain ðλ−; λþÞ when λ− > λ̃− or λþ < λ̃þ. The
lack of steepness originates linear tails of the rate function I
that begin at the singular pointsw− ≡ ϕ0ðλ−Þ > −∞ if λ− >
λ̃− and wþ ≡ ϕ0ðλ−Þ < þ∞ if λþ < λ̃−. In fact, the
supremum in Eq. (4) reads

IðwÞ ¼

8><
>:

λ−ðw − w−Þ þ iðw−Þ if w ≤ w−;

iðwÞ if w− < w < wþ;

λþðw − wþÞ − iðwþÞ if w ≥ wþ

with iðwÞ≡ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðw=PeÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þκÞ2þPe2

p
−1−κ−wÞ=2.

Interestingly, the smooth function i is the rate function of
the entropy production at stationarity [73]. The entropy
production differs from the active work by local contribu-
tions of the initial and ending points of the trajectory [73],
which prevent its rate function from exhibiting singularities
at stationarity [73], a circumstance that boosts the interest
in the active work.
Figure 1 shows the functions ϕ and I. Figures 1(a) and

1(b) refer to the concentrated nonstationary initial condition
σr↓0 and σa↓0, for which the primary and the effective
domain coincide. Figures 1(c)–1(f) correspond to stationary
initial conditions. At stationarity the rate function has a left

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 1. Asymptotic CGF ϕ and rate function I under a
concentrated nonstationary initial condition with σr↓0 and
σa↓0 for κ ¼ 0.01 and Pe ¼ 0.5 in (a) and (b), under the
stationary initial condition with κ ¼ 2.0 and Pe ¼ 0.2 in (c)
and (d), and under the stationary initial condition with κ ¼ 20.0
and Pe ¼ 200.0 in (e) and (f). The dark and light blue areas in (a),
(c), and (e) mark the regions outside the primary and effective
domain, respectively. The dotted lines in (d) and (f) mark the
beginning of the left linear tail at w− and of the right one at wþ.
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linear tail, i.e., λ− > λ̃−, for Pe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3þ κÞð1þ 3κÞp

> 1 − κ2

and a right linear tail, i.e., λþ < λ̃þ, for κ > 1 [73]. Figure 2
reports phase diagrams as deduced by inspecting the ratios
r− ≡ λ−=λ̃− and rþ ≡ λþ=λ̃þ. Figures 2(a) and 2(b) show
that at stationarity and at large κ and Pe the effective
domain is significantly smaller than the primary domain
with λ− ≫ λ̃− or λþ ≪ λ̃þ, respectively. Figures 2(c) and
2(d) depict r− and rþ under nonstationary initial conditions
for fixed values of κ and Pe such that the corresponding
stationary problem has no linear tail. We find λ− ≫ λ̃− or
λþ ≪ λ̃þ at large σr and σa. The results of Ref. [67] on the
free AOUP are consistently recovered in the limit κ↓0 by
the confined nonstationary model with σa ¼ Pe [73].
Singularities of the rate function are lost in this limit.
Interpretation of the singularities of the rate function

requires to analyze the particle trajectories. Figure 3(a)
reports three trajectories at stationarity with large κ and Pe
conditional on Wτ ¼ wτ with w ≪ w−, w ≈ hwi, and
w ≫ wþ. hwi is the typical value of the active work, that
is IðhwiÞ ¼ 0. A fluctuation w ≪ w− of the active work
involves a short initial transient during which the particle is
captured by the harmonic trap. Figure 3(b) shows that this
transient is characterized by a large value of the initial
position, rð0Þ ∼ ffiffiffi

τ
p

, which goes along with a large value of

the initial active force, að0Þ ∼ ffiffiffi
τ

p
, in the same direction

since rð0Þ and að0Þ are positively correlated by Eq. (2).
Their contribution to the active work is of order
−að0Þrð0Þ ∼ τ and negative because the particle moves
oppositely to the active force. In conclusion, the fluctuation
w ≪ w− is due to an initial transient that provides a
macroscopic fraction of the active work, with the active
force trying to push the particle out of the harmonic trap
unsuccessfully. Specularly, a fluctuation w ≫ wþ entails a
final short transient during which the particle escapes from
the trap. In fact, Fig. 3(c) proves that there are large final
values of the position and the active force, rðτÞ ∼ ffiffiffi

τ
p

and
aðτÞ ∼ ffiffiffi

τ
p

, and that they are in the same direction. Their
contribution to the active work is positive and of order
aðτÞrðτÞ ∼ τ since this time the active force successfully
pushes the particle out of the trap. None of the above
transients is observed when w ≈ hwi. According to
Fig. 3(d), the distribution of the net displacement in a
time interval τ has one peak at zero when w ≈ hwi and two
symmetric peaks due to final large values when w ≫ wþ.
Finally, under the nonstationary initial condition with

small κ and Pe, where dynamical phase transitions do not
occur at stationarity, we observe singularities at both

FIG. 2. Phase diagram as deduced by the ratios r− ≡ λ−=λ̃− and
rþ ≡ λþ=λ̃þ between the effective and primary domain boundary
points of the asymptotic CGF. Colored areas denote regions
where a dynamical phase transition occurs, i.e., r− < 1 or rþ < 1,
and the color scale measures r− and rþ. Gray areas denote
regions without a singularity, i.e., r− ¼ 1 or rþ ¼ 1. (a) and (b):
r− and rþ under the stationary initial condition in the κ − Pe
plane. (c) and (d): r− and rþ under the nonstationary initial
condition in the σr − σa plane at κ ¼ 0.7 and Pe ¼ 0.1 for which
there is no dynamical phase transition at stationarity. The regions
under the dashed lines do not exhibit any phase transition.

(a) (d)

(b) (e)(c)

FIG. 3. Trajectory analysis at stationarity with κ ¼ 20.0 and
Pe ¼ 200.0 and under the nonstationary initial condition with
κ ¼ 0.7 and Pe ¼ 0.1. (a) Typical trajectories of the particle in the
stationary configuration up to time τ ¼ 103 corresponding to w ¼
26 ≪ w− ¼ 1.73 × 103 (red), w ¼ 1.92 × 103 ≈ hwi (green), and
w ¼ 4.10 × 103 ≫ wþ ¼ 2.11 × 103 (blue). (b) and (c): Initial
and ending points of a pool of stationary trajectories correspond-
ing to w ≤ 8.00 × 102 ≪ w− and w ≥ 3.20 × 103 ≫ wþ, respec-
tively. (d): stationary distribution of the net displacement
conditional on typical w in the interval −σw < w − hwi < σw
(top) and on large w in the interval 3σw < w − hwi < 4σw
(bottom), σw ∼ 2.76 × 102 being the standard deviation of the
active work. (e): Initial and ending points of a pool of nonsta-
tionary trajectories with σr ¼ σa ¼ 10 and τ ¼ 2 × 104 corre-
sponding to w ≤ −5.00 × 10−2 ≪ w− ¼ 1.09 × 10−3 and
w ≥ 2.50 × 10−1 ≫ wþ ¼ 8.19 × 10−2, respectively.
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w ≪ w− and w ≫ wþ. These singularities arise solely due
to large values in the initial condition, rð0Þ ∼ ffiffiffi

τ
p

and
að0Þ ∼ ffiffiffi

τ
p

as shown by Fig. 3(e), with the particle captured
by the harmonic trap providing a contribution of order
−að0Þrð0Þ ∼ τ to the active work. The latter can be either
negative or positive since rð0Þ and að0Þ are now
uncorrelated.
The occurrence of large values of rð0Þ and að0Þ or rðτÞ

and aðτÞ is reminiscent of some big-jump phenomena
observed in sums of independent random variables
[21,23,28,78]. The latter works have understood that a
fluctuation in the linear tail of the rate function can be
decomposed in two parts: many small deviations in the
same direction which sum up to the singular point, and a
big jump of a single variable summing to the actual value of
the fluctuation. Basically, we find that a large fluctuation of
the active work is realized in a similar way through some
big jumps, which localize at the initial or at the ending
points of the trajectories due to the dependence structure of
the process. In fact, suppose a big jump of rðtÞ and aðtÞ
occurs at an intermediate time t, with the particle escaping
the trap up to t and generating a positive active work;
afterwards, the particle is bound to be recatched, and in
doing so generates a negative active work that cancels out
the first contribution. We mention that a crucial role of
initial conditions has been recently also proven in current
rate functions [79,80] and correlation functions [81,82].
In summary, we have characterized the active work large

fluctuations of an AOUP in a harmonic potential. We have
demonstrated that confinement can induce dynamical phase
transitions at sufficiently large active and harmonic force
parameters. Furthermore, we have provided an in-depth
understanding of these transitions in terms of phase
separation in trajectory space driven by big-jump mecha-
nisms. These results can contribute to interpret singularities
of active work rate functions in systems of interacting
active Brownian particles. We plan to extend our approach
to current fluctuations of several AOUPs and to problems
involving AOUPs coupled via elastic forces, like active
polymers [83]. Big jumps could also show up in current
fluctuations, as suggested by studies on run and tumble
particle systems [79].
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