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In the systems showing critical behavior, various response functions have a singularity at the critical
point. Therefore, as the driving field is tuned toward its critical value, the response functions change
drastically, typically diverging with universal critical exponents. In this Letter, we quantify the inequality of
response functions with measures traditionally used in economics, namely by constructing a Lorenz curve
and calculating the corresponding Gini index. The scaling of such a response function, when written in
terms of the Gini index, shows singularity at a point that is at least as universal as the corresponding critical
exponent. The critical scaling, therefore, becomes a single parameter fit, which is a considerable
simplification from the usual form where the critical point and critical exponents are independent. We
also show that another measure of inequality, the Kolkata index, crosses the Gini index at a point just prior
to the critical point. Therefore, monitoring these two inequality indices for a system where the critical point
is not known can produce a precursory signal for the imminent criticality. This could be useful in many
systems, including that in condensed matter, bio- and geophysics to atmospheric physics. The generality
and numerical validity of the calculations are shown with the Monte Carlo simulations of the two
dimensional Ising model, site percolation on square lattice, and the fiber bundle model of fracture.
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Critical phenomena are observed in an expansive variety
of physical systems undergoing equilibrium (fluids, binary
mixtures, magnetic systems, superfluidity, superconductiv-
ity, etc.), as well as nonequilibrium phase transitions
(fracture, active particles, etc.) [1]. When a system
approaches a critical point by tuning a driving field F
toward its critical value Fc, a suitably defined response
function M (e.g., derivatives of free energy) would show a
singular variation of the formM ∝ jF − Fcj−n. While from
the universality hypothesis the value of the critical expo-
nent n remains the same within a class of systems, the
critical point Fc very much depends on the details of each
system, thereby posing one of the major difficulties in
estimating the critical exponent values [2].
In this Letter, we present a framework where the critical

behavior can be formulated using a measure called the Gini
index (g), which quantifies how unequal the response of a
system is near the critical point [3]. The Gini index has been
used for over a century in quantifying economic inequality.
However, for the critical scaling of physical quantities, the
Gini index of a response function shows a singularity at a
point that is at least as universal as the corresponding critical
exponent. Hence, the critical scaling for any unknown
function becomes a one-parameter fit. We also formulate
a precursory signal for an imminent critical point using a
different measure of inequality, the Kolkata index (k) [4].
Because of the singular form ofM, small changes inF can

result in changes by very unequal amounts inM, depending
upon the proximity to the critical point Fc (here we take
Fc > 0, without loss of generality). Such highly unequal

responses are ubiquitously manifested in various physical
systems. For example, the drastic changes in the magnetic
susceptibility near a ferromagnetic to paramagnetic tran-
sition [2], growing avalanche sizes in a stressed quasibrittle
material driven toward the failure point [5], widely varying
energy releases in earthquake events due to slowly moving
tectonic plates [6], occurrences of catastrophic desertifica-
tion due to small changes in endogenous [7] pressure, are a
few instances of such unequal responses of measurable
quantities near the corresponding critical points.
Given the often consequential nature of such transitions,

along with estimating the critical exponent values, it is also
of wide interest to predict the proximity to an imminent
critical transition point [8–10]. As the critical point is a
nonuniversal quantity, one often has to resort to multi-
parameter fitting, Binder cumulant calculations, machine
learning based regressions, or other system-specific meth-
ods in order to estimate the critical exponent values as well
as the proximity to an imminent drastic change in the
system, i.e., the critical point [11–18].
Here, we show that any response function M ∝ jF −

Fcj−n can be written in terms of the corresponding Gini
index asM ∝ jg − gfj−n� , where n� is a function of n and gf
is either a function of n or 1. We also show, through another
measure of the inequality in values of M, the so-called
Kolkata index (k), that the condition g ¼ k is satisfied for
F ¼ F� < Fc if n > 1, with the crossing point value of the
two indices approaching 1=2 from above as n → ∞,
thereby the condition acts as a precursor to the approaching
criticality. For the ranges of the value of n that usually
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appears in physical systems, this crossing point value is
close to 0.87 (very weakly dependent on n).
The inequality indices g and k (and similar other indices)

are defined using the so-called Lorenz function. Lorenz
function was introduced in 1905 primarily to quantify
wealth inequality in an economy [19]. Traditionally the
function LðpÞ is defined as the fraction of the total wealth
of a society possessed by the poorest p fraction of the
population. In the present context, for a monotonically
diverging response function, the function LðpÞ can be
computed within an arbitrary range fromF ¼ A toF ¼ B as

Lðp; n; A; BÞ ¼
R AþpðB−AÞ
A M dF
R
B
A M dF

; ð1Þ

where A < B < Fc. Experimentally and numerically, in the
ferromagnets and Ising model, for example, for a series of
values of temperature below the critical point, one could
compute the Lorenz function with the (unequal) values of
susceptibility (M ¼ χ, F ¼ T there) using the above equa-
tion. For the other side of criticality, the limits need to be
appropriately reversed. By definition Lðp ¼ 0Þ ¼ 0 and
Lðp ¼ 1Þ ¼ 1. Within the range 0 < p < 1, LðpÞ is con-
tinuous, monotonically growing, and with a positive curva-
ture, if any. In the extreme limit ifM is independent ofF, i.e.,
the responses are always equal no matter the driving field,
then LðpÞ ¼ p, which is called the equality line. The
departure of LðpÞ from this equality line, therefore, is a
measure of the inequality in M.
To put a value to this inequality, i.e., to define an

inequality index or coefficient, one needs to look at what
is called the summary statistics of Lðp; n; A; BÞ, i.e., the p
dependence needs to be removed. This can be done by
either integrating Lðp; n; A; BÞ over the full range of p, or
by evaluating it at a particular value of p. The Gini index,
defined as

gðn; A; BÞ ¼ 1 − 2

Z
1

0

Lðp; n; A; BÞdp; ð2Þ

is an exercise of the former, while the Kolkata index,
defined as the fixed point 1 − k ¼ Lðk; n; A; BÞ, is that of
the latter. The interpretation for g is that it is the area
between the equality line and the Lorenz curve divided by
the area under the equality line (necessarily 1=2).
Therefore, it varies between g ¼ 0 (complete equality) to
g ¼ 1 (just one value is nonzero). The k index has the
interpretation that 1 − k fraction of the largest values
accounts for the k fraction of the total value. It is a
generalization of Pareto’s law [20].
We will first look at the properties of the Lorenz function

and particularly the Gini index, when measured near the
critical point of a system. To quantify proximity to
the critical point, let us write A ¼ aFc and B ¼ bFc.

Then from Eq. (1), using the power-law variation of M,
we get (n ≠ 1, n ≠ 2)

Lðp; n; a; bÞ ¼ ð1 − aÞ1−n − ½1 − a − pðb − aÞ�1−n
ð1 − aÞ1−n − ð1 − bÞ1−n : ð3Þ

It is then straightforward to evaluate the Gini index

gðn;a;bÞ¼ 1−
2

ð1−aÞ1−n− ð1−bÞ1−n

×

�
ð1−aÞ1−nþð1−bÞ2−n− ð1−aÞ2−n

ð2−nÞðb−aÞ
�
; ð4Þ

while the Kolkata index needs to be numerically evaluated
from

1−kðn;a;bÞ¼ ð1−aÞ1−n− ½1−a−kðn;a;bÞðb−aÞ�1−n
ð1−aÞ1−n− ð1−bÞ1−n :

ð5Þ

We will use the notation gðb ¼ 1; nÞ ¼ gf and kðb ¼
1; nÞ ¼ kf and keep n > 0. In the following we consider
the cases n < 1, n > 1, and n > 2 separately, with the
corresponding consequences in the scaling form of M.
Note that the Gini index can be calculated from the qth
order derivative of M with respect to F, which is also a
diverging function at Fc with a different exponent. Let us,
therefore, fix the notation that Δgðϕ;qÞ denotes the critical
interval, when g (and gf) are calculated using the qth order
derivative of some response function having the original (i.e.,
in terms of jF − Fcj) exponent ϕ. So, for example, Δgðα;1Þ
would mean that it is calculated for the first derivative of
specific heat and so on. The same is true for the rescaled
exponents, i.e., γðβ;1Þ wouldmean the susceptibility exponent
appearing in the power ofΔgðβ;1Þ, where g is calculated using
the first derivative of the order parameter (a diverging
quantity at Fc).
Case I (0 < n < 1).—Clearly, gðb ¼ 1; nÞ ¼ gf ¼ n=

ð2 − nÞ, which is independent of a. It also follows from
Eq. (4) that for b → 1, keeping up to the leading order term
in ð1 − bÞ1−n, we have [the details of the calculations are
given in the Supplemental Material (SM) [21] ]

gðn; a; bÞ ≈ n
2 − n

− 2ð1 − bÞ1−nð1 − aÞn−1; ð6Þ

which means jg − gfj ¼ Δgðn;0Þ ∝ ð1 − bÞ1−nð1 − aÞn−1.
Since 1 − b ∝ Fc − F and a is constant,

M ∝ Δg−n=ð1−nÞðn;0Þ ; ð7Þ

with gf ¼ n=ð2 − nÞ and 0 < n < 1. See Fig. 1(a) for
comparisons with numerical evaluations for some typical
values of n.
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Case II (1 < n < 2).—In the limit b → 1, Eq. (4) gives
gf ¼ 1. It also follows from Eq. (4) that up to the leading
order jg − gfj ¼ Δgðn;0Þ ∝ ð1 − aÞ1−nð1 − bÞn−1, which as
before leads to

M ∝ Δg−n=ðn−1Þðn;0Þ ; ð8Þ

with gf ¼ 1 and 1 < n < 2. See Fig. 1(b) for comparisons
with numerical evaluations for some typical values of n.
See also Fig. 2(a) of the SM for the manifestation of this
scaling in two dimensional Ising model.
Case III (n > 2).—Here, also gf ¼ 1. Then up to the

leading order, jg − gfj ¼ Δgðn;0Þ ∝ ð1 − bÞ=ð1 − aÞ. This
implies

M ∝ Δg−nðn;0Þ; ð9Þ

with gf ¼ 1 and n > 2. See Fig. 1(c) for comparisons with
numerical evaluations for some typical values of n. See also
Fig. 2(b) of the SM for the manifestation of this scaling in
the site percolation.
Case IV (n ¼ 1 and n ¼ 2).—For n ¼ 1, up to the

leading order g ≈ 1þ ð2=bÞ½1= lnð1 − bÞ� and with gf → 1

for n → 1, lnðMÞ ∼ Δg−1n;0. Similarly, for n ¼ 2,
g ≈ 1þ ð2=bÞ½ð1 − bÞ lnð1 − bÞ�. With gf → 1 for n → 2,
we have M=½lnðMÞ�2 ∼ Δg−2ðn;0Þ. Numerically these are
verified in Fig. 1(d).
In the above cases, we have written a generic response

function near any critical point in such a way that the
critical exponent (n�) and the critical point (gf) are equally
universal. We have calculated g from one side of the critical

point for the diverging response function, but it is extend-
able to the other side of the critical point (see Fig. 1 in SM).
Also, it follows that the corresponding coefficients of such
a diverging function are expected to be the same on
both sides.
Note that, for practical purposes, when the proximity to

the critical point is a priori not known, for a series of values
of the driving parameter F, one can calculate a series of
values of g [from Eq. (4)] for a response function. An
estimate of the critical point could be made beforehand by
noting the maximum of g (see Sec. IV in SM, specifically
Fig. 5). These g values can then be fitted using Eqs. (7), (8),
or (9), which is then a single parameter fit, since gf is solely
dependent on n, the exponent value. This is a considerable
simplification from the usual situation where the critical
point (Fc) and the critical exponent (n) are independent.
It is useful to revisit the implications of the critical

scaling, using g on (a) the finite size scaling, to show what
is expected for a simulation study with finite system sizes,
and (b) precursor to critical point, for a practical application
of the inequality measures in a variety of systems.
Finite size scaling.—A characteristic feature of second

order phase transition is the divergence of a correlation
length ξ at the critical point Fcð∞Þ (in the infinite system
size limit), where Fc can be critical temperature (Tc) in
Ising model, percolation threshold (pc) in percolation, or
critical applied stress (σc) in the fiber bundle model (FBM)
of fracture, etc. In a finite system, however, near FcðLÞ the
role of ξ is taken over by the linear system size L:

jF − Fcð∞Þj ∝ ξ−
1
ν ⟶ jFcðLÞ − Fcð∞Þj ∝ L−1

ν: ð10Þ

Recalling that jg − gfj ∝ cðnÞjF − Fcjθ, where cðnÞ is only
dependent on n and θ ¼ 1 − n for 0 < n < 1, θ ¼ n − 1 for
1 < n < 2 and θ ¼ 1 for n > 2, at the critical point of a
finite system (of linear size L) we would have

jgfðLÞ − gfð∞Þj ∝ L−θ
ν; ð11Þ

with the values of θ depending on n as mentioned above.
This is numerically verified for the Ising model on square
lattice (see Fig. 6 in SM).
Precursor to critical point.—The closed form of the

Kolkata index k is not possible for arbitrary n [see Eq. (5)].
However, its numerical evaluation shows the remarkable
property that for n > 1, k becomes equal to g at two points:
one is the trivial point where gf ¼ kf ¼ 1 at the critical
point, but the other point (say, g� ¼ k� at F ¼ F�) is
necessarily below the critical point and usually very close
to it (see Fig. 7 in SM). Therefore, for any system
approaching a critical point (from either side, if possible),
monitoring g and k for a sufficiently strongly diverging
response function (n > 1) would indicate an imminent
critical point when the two quantities become equal and
have a value smaller than 1 (see Fig. 2).

FIG. 1. The scaling behavior of a response function in terms of
the Gini index is shown. As M ∝ ΔF−n, the divergence with
respect to the Gini index is M ∝ Δg−n�ðn;0Þ, where the divergence

exponent n� ¼ n=ð1 − nÞ for 0 < n < 1 [(a) showing some
typical examples], n� ¼ n=ðn − 1Þ for 1 < n < 2 [(b) showing
some typical examples], n� ¼ n for n > 2 [(c) showing some
typical examples], and (d) shows the particular cases of
n ¼ 1 and n ¼ 2.

PHYSICAL REVIEW LETTERS 131, 157101 (2023)

157101-3



Having a reliable precursory signal to an imminent
critical point is a crucial issue in many physical systems,
including fracture, environmental catastrophe, market
crash, etc. In the case of fracture [5], this issue have been
addressed in several different ways, including using
inequality indices [23–25].
Here, we take three paradigmatic examples, the Ising

model, and the site percolation problem on square lattices
and the fiber bundle model of fracture and show that g� ¼
k� at F ¼ F� < Fc (where F ¼ T in Ising model, F ¼ p in
percolation, and F ¼ σ in FBM) is a reliable precursor to
critical point on both sides of criticality for the first two
models and for one side in the case of FBM (since there is
no stable state on the other side of criticality in this case).
First we consider the dynamics of the fiber bundle model

for fracture, which has been viewed as a critical phenomena
for several decades. It is a threshold activated cellular
automata type model that reproduces many features of
fracture dynamics (see Ref. [26] for a review), including the
intermittent scale-free avalanche dynamics in disordered
quasibrittle materials. With N elements (fibers) carrying a
load W, the mean field version of the model is analytically
tractable. For a mild restriction on the failure threshold
(load beyond which a fiber breaks and redistributes its load
to the remaining fibers) probability distributions of the
individual fibers, the fraction of surviving fibers UðσÞ ¼
NðσÞ=N for an applied load per fiber σ ¼ W=N has the
formUðσÞ ¼ UðσcÞ þDðσc − σÞ1=2, whereD is a constant
that depends on the distribution function and σc is the
critical load beyond which the system collapses [21]. One
can then consider the response function

SðσÞ ¼
�
�
�
�
dU
dσ

�
�
�
� ∝ ðσc − σÞ−1=2; ð12Þ

which has the physical interpretation of the avalanche size
(if a constant amount of load dσ is added to the system
every time it comes to a stable state). For detecting the
precursory signal from the Gini and Kolkata indices (i.e., to
make them cross), we need a function that diverges with an
exponent higher than 1. We consider the function S3ðσÞ,
which will diverge with an exponent 3=2. A higher power
would still work, but will give a precursory signal earlier,
eventually leading to the trivial limit where precursor is set
as soon at F > 0 (see Fig. 7 in SM). We numerically
evaluate S3ðσÞ from the simulation data. Then we calcu-
lated the inequality indices gð3=2;0Þða; b; n ¼ 3=2Þ and
kð3=2;0Þða; b; n ¼ 3=2Þ and found that they cross at a point
prior to the critical point [see Fig. 2(c)]. The crossing point,
therefore can serve as an indicator to imminent critical
point (catastrophic breakdown in this case) irrespective of
the threshold distribution function.
Note that in an SOC state, the system is always very close

to the critical point. Its response statistics are generally scale-
free. It is analytically known for the FBM that the avalanche
size distribution exponent value is the same for both the
(mean field) self-organized criticality (SOC) case [27] and
for the avalanches occurring only very close to the (tuned)
critical point [28]. Note that the crossing point value
g� ¼ k� ≈ 0.87, which is almost independent of the diver-
gence exponent, is what was numerically observed in
simulations [29] of SOC models (including FBM) and the
real data of many systems assumed to be in the SOC state
[25,30]. This near-universal observation can now be argued
from the above to be a consequence of the measurements of
inequality indices [from Eqs. (4) and (5)] of the correspond-
ing response functions very close to the critical point.
The generality of this precursory signal can be seen by

applying it for the two dimensional Ising model and site

(a) (b) (c)

FIG. 2. The precursory signals from the crossing points of Gini (g) and Kolkata (k) indices. (a) The values of g and k are measured for
χ2 in the two dimensional Ising model from either side of the critical point (by increasing and decreasing temperature from below and
above the critical point, respectively). The crossing happens close to the critical point. In simulation, g and k do not reach 1 due to finite
size effect. (b) Here, the same is done for the second moment of cluster sizes for the site percolation in two dimensions. (c) Here, the cube
of the avalanche sizes are taken for the fiber bundle model [S3 ∝ ðσc − σÞ−3=2]. The crossing can only be shown here in the precritical
regime, since there is no stable configuration of the model for σ > σc, the catastrophic failure point. In all cases the analytical estimates
are also shown, which do not match very well since in the simulations the power-law variation is only valid very close to the critical
point. But the crossing point values for g and k are almost independent of the associated exponent value.
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percolation on square lattice. For the Ising model, the
susceptibility (χ) diverges with an exponent γ ¼ 7=4 [1].
While g and k are expected to cross for this, the crossing
point is expected to be very close to the critical point (see
Fig. 7 in the SM). So, we take χ2 instead (diverging with an
exponent 7=2), for which the crossing points for g and k can
be seen [Fig. 2(a)] from both sides of the critical point.
Similarly, for the site percolation on square lattice, the
second moment of the cluster size distribution diverges
with an exponent 43=18 [31]. Here also, the crossing of g
and k could be seen prior to the critical point on both sides
of the critical point [Fig. 2(b)].
In conclusion, inequality measures of diverging response

functions near a critical point enable a superuniversal
representation of such functions [see Eqs. (7), (8),
and (9)] that are free from the nonuniversal, model specific
critical point. It also allows for a precursory signal of an
approaching criticality, which is crucial in many systems.
The analytical results are verified through numerical
simulations of the two dimensional Ising model, site
percolation on square lattice, and the fiber bundle model
of fracture, but these are applicable to any equilibrium or
nonequilibrium critical phenomenon.
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