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Lattice dynamics measurements are often crucial tools for understanding how materials transform
between different structures. We report time-resolved x-ray scattering-based measurements of the
nonequilibrium lattice dynamics in SnSe, a monochalcogenide reported to host a novel photoinduced
lattice instability. By fitting interatomic force models to the fluence dependent excited-state dispersion, we
determine the nonthermal origin of the lattice instability to be dominated by changes of interatomic
interactions along a bilayer-connecting bond, rather than of an intralayer bonding network that is of primary
importance to the lattice instability in thermal equilibrium.
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The interatomic forces that determine materials’ struc-
ture and dynamics can be modified by temperature,
pressure, chemical composition, and applied fields, leading
to new equilibrium phases with dramatically different
electronic, thermal, and mechanical properties [1–3].
Inelastic scattering measurements using x-ray [4–6] or
neutron [7,8] can reveal microscopic details of interatomic
interactions that lead to phase transitions. We extend such
an idea to femtosecond x-ray diffuse scattering, by meas-
uring temporal coherences in the mean-square atomic
displacements associated with a rapid change in the
interatomic forces, as a function of momentum transfer
[9–12]. The method allows access to phonon dispersions on
short timescales, and hence allows extraction of interatomic
interactions involved in the generation of nonequilibrium
states, which may possess properties that do not exist in the
equilibrium [13].
Here we report nonequlibrium lattice dynamics study

of the monochalchogenide SnSe, which we recently dem-
onstrated hosts a novel lattice instability upon photoexci-
tation using ultrafast x-ray diffraction [14]. As diffraction
yields information on the average structure and dynamics
within the unit cell, it can tell us about changes in bond

lengths. However, ultimately time- and momentum-
resolved lattice dynamics measurements such as reported
here are required to access the collective excitations over a
range of length scales which gives information on how and
which interatomic forces change upon photoexcitation. By
fitting interatomic force models to the fluence-dependent
excited-state dispersion, we demonstrate the nonthermal
nature of the interatomic bonding in the photoexcited state
of SnSe. The changes of interatomic interactions along an
interlayer bond lead to the photoexcited-state lattice insta-
bility in Ref. [14], which is distinct from the well-known
high-temperature phase. In contrast, the lattice instability in
thermal equilibrium is associated with the intralayer bond-
ing network.
In some of the IV–VI, V, V2VI3 semiconductors, a

valence-unsaturated p orbital bonding network is formed
due to the large energy separation in the s and p orbitals
[15] and is known to give rise to important properties
including low thermoconductivity, instability of the lattice
[16], large polarizability [17], and large change of optical
constants upon phase change [18]. These correspond to
applications including thermoelectric, ferroelectric, and
phase change materials. Such a valence-unsaturated p
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orbital bonding network has been dubbed “resonant bond-
ing” [11,16,18–20] in analogy with the concept from
Pauling’s work on benzene [21]. In this case, the p orbital
(px, py, pz) bonding network naturally leads to three
orthogonal atomic chains [22,23] and thus a rocksaltlike
structure as the parent structure. The key properties of the p
orbital bonding network originate from its long-range
interactions along one or more of the three chains
[11,16,19,23]. Wuttig et al. [24] note that the properties
are fundamentally different from resonant bonding in
benzene and graphene, and that the long-range p orbital
bonding features bonding characteristics distinct from
metallic, ionic, or covalent bonds, leading them to describe
the bonding as “metavalent” [25,26].
SnSe, as material from this group, is of orthorhombic

space group Pnma at room temperature. The structure is a
distortion from the rocksaltlike parent structure and fea-
tures a stacking of bilayers along the a axis. The valence-
unsaturated p orbital bonding network lies in the b-c (y-z)
plane. Frozen phonon calculations show that in the equi-
librium, soft phonon displacement induces long-range
charge-density perturbations along p bonding directions
in the b-c plane [27], i.e., the p orbital bonding direction,

which explains the soft phonon that leads to the thermal
phase transition to the Cmcm structure, as well as the large
anharmonicity that leads to low thermoconductivity
[27,28]. Raman measurements show that the Raman-active
modes which experience significant frequency softening
upon the thermal Pnma-Cmcm transition are those polar-
ized in the b-c plane along c rather than those along a
[29,30]. Thus, it is confirmed in SnSe that in thermal
equilibrium, lattice instability and the large anharmonicity
originated from the unsaturated p network with long-range
interatomic interactions. We show in Fig. 1(a) the six
nearest neighbor bonds of the rocksalt structure that
become four inequivalent bonds in Pnma. In particular,
the d2 and d3 bonds primarily along [011] and ½011̄�
directions belong to the unsaturated p orbital bonding
network, the bilayer-connecting d4 bond is largely tilted
from the octahedral coordination of a parent structure.
Based on density function theory (DFT) calculation of
interatomic forces, d4 is a much weaker bond than d1, and
thus does not belong to part of the p-orbital bonding
network with long-range interactions. However, by fitting
an interatomic force model to the excited state phonon
dispersions, we found that it is the change in interatomic

(a) (c)

(d)

(b)

FIG. 1. (a) The unit cell of the Pnma phase of SnSe illustrates the d1-d4 bonds derived from nearest neighbor bonds in the parent cubic
structure. (b) The experimental setup. The sample can be rotated around its normal by an azimuthal angle φ, and a 2D detector captures
the diffuse scattering intensity as a function of delay t between the optical pump and x-ray probe. The green vector shows the momentum
transfer Q, associated with scattering on a particular pixel on the detector. The detector image shows the typical intensity pattern for a
fixed φ. White lines represent the Brillouin zone boundaries of the Pnma structure. (c) Time dependence of the relative intensity for
representative Q along ðH11̄Þ, H∈ ½3; 4�. Black lines show LPs. (d) The magnitude of the Fourier transform of time traces as those
shown in Fig. 1(c).
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interaction of the bilayer-connecting d4 bond, rather than
the in-plane bonds, that destabilizes the SnSe structure and
leads to soft phonons in its photoexcited state.
The experiment was performed at the x-ray pump-probe

(XPP) end station at the Linac Coherent Light Source
(LCLS) free electron laser using 9.5 keV x rays [10,31].
The 1.55 eV near-infrared (NIR) pump pulses were derived
from a Ti:sapphire laser. We show the experimental setup in
Fig. 1(b). The x rays illuminated the sample at a fixed
grazing incidence to approximately match the penetration
depth with the (p polarized) NIR laser. The Cornell-SLAC
pixel array detector [32] is placed ∼100 mm behind the
sample, which allows us to map out a large portion of the
Ewald sphere when rotating the sample about the sample
surface normal (azimuth φ).
In Fig. 1(c) we show diffuse scattering intensity as

a function of the pump-probe delay t, for selected scat-
tering vectors or momentum transfer, Q ¼ ðH11̄Þ where
H∈ ½3; 4� in reciprocal lattice units of the orthorhombic
Pnma structure. Figure 1(d) shows the magnitude of the
Fourier transform of time-domain data, clearly displaying
dispersive modes. We extract the oscillator parameters by
linear prediction (LP) assuming that the data is composed
of decaying cosines [33–35]. The LP is shown with black
lines in Fig. 1(c) which reproduce the data well.
Figure 2 shows the photoexcited phonon dispersion and

combines data collected overQ ¼ ðH11̄Þ, (H∈ ½3; 5�). The
size of the dots represents the log-scaled LP amplitude of
the oscillations, while the colors of the dots represent
different pump fluences. The solid lines show the phonon
dispersion computed from DFT. The branches shown in red
are the c-polarized transverse acoustic (TA) branch which
folds into the lowest transverse optical (TO) branch [TO
and TA are referred to as TðcÞ]. Similarly, the blue line

shows the a-polarized longitudinal acoustic (LA) branch
that folds into the lowest longitudinal optical (LO) branch
[referred to together as LðaÞ]. The assignment of LðaÞ and
TðcÞ phonon branches with reduced wave vectors q ¼
ðh00Þ [along Γðh ¼ 0Þ −Xðh ¼ 0.5Þ] is based on the
phonon polarization selectivity of the phonon structure
factor. b-polarized modes are not observed.
We show in Figs. 3(a) and 3(b) the measured fluence

dependence of the TðcÞ and LðaÞ mode frequencies for
multiple H values. The entire TðcÞ branches soften with
fluence, most significantly at the folded zone center
(H ¼ 4), and resembles the softening with temperature
across the Pnma-Cmcm transition (see Supplemental
Material [36], Fig. 3). However, the frequency of LðaÞ
is nonmonotonic with fluence, most pronounced near the
avoided crossing in Fig. 2. In order to gain insight into
interatomic interactions that are responsible for the photo-
excited lattice dynamics reflected in changes of phonon
frequencies, we fit an interatomic force model to the
measured dispersion. We define entries of the pairwise
interatomic force tensor between two atoms connected by
bond dn as Fnði; jÞ [45]. We perform least-square fitting to
measured TðcÞ and LðaÞ frequencies by adjusting a subset
of the Fnði; jÞ. The long-range interatomic pairs from the p
bonding network are incorporated, and we assume no
knowledge of the atomic position change upon photo-
excitation (see Supplemental Material [36], Sec. I).
The fitting results and the correlation analysis suggest

that, under photoexcitation, the bilayer-connecting d4 bond
is more responsible for phonon softening and lattice
instability compared to in-plane bonds along [011] and
½011̄�. We find that the modification to a single force
constant F4ðx; xÞ dominates the observed changes in LðaÞ
frequencies, and similarly F4ðz; zÞ for TðcÞ. Figure 3(c)

FIG. 2. Low-frequency phonons of photoexcited SnSe propagated along the a direction (Q ¼ ðH11̄Þ, H∈ ½3; 5�), extracted from LPs.
The solid lines are the ground state phonon dispersion based on DFT. Red and blue lines represent TðcÞ and LðaÞ, respectively.
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[Fig. 3(d)] shows the average value of F4ðz; zÞ [F4ðx; xÞ]
independently fitted to the two datasets H∈ ½3; 4� and
H∈ ½4; 5� in Fig. 2. Figure 3(c) suggests an increase of
the negative F4ðz; zÞ upon increased fluence, which is well
correlated to the monotonic TðcÞ softening under photo-
excitation. The fluence dependence of fitting results
F4ðx; xÞ as shown in Fig. 3(d), is well correlated to the
nonmonotonic LðaÞ fluence dependence behavior under
photoexcitation [46]. Even as long-range in-plane bonds
along [011] and ½011̄� are included in the fitting model, the
fitted force tensors for these bonds do not correlate
significantly with the mode softening. This attests to a
nonthermal bonding origin for the lattice instability in
photoexcited SnSe.
Consistent with the nonthermal nature of the interatomic

bonding, we show below that the photoexcited lattice is
more harmonic than the thermal one at the temperature
that produces a similar level of softening of the symmetric
Raman active Ag modes at the zone center. We compare
the phonon damping rate γ [50] versus the frequency, as
the latter maps to phonon softening, which can be taken
as a measure of the proximity to a phase transition [51].
In Figs. 4(a)–4(d) we show γ for all four Ag modes obser-
ved under photoexcitation and in equilibrium. Even as

intraband phonon scattering [52–55] significantly contrib-
utes to an increased phonon linewidth in the photoexcitated
states, the phonon damping rate under photoexcitation is
consistently lower than its counterpart under thermal
equilibrium. The data indicate that the photoexcited lattice
is much more harmonic than the lattice at a similar
proximity to the thermal phase transition. Such observa-
tions have to do with the fact that the anharmonicity of a
solid in thermal equilibrium is developed through a
significant change in the lattice constants and internal
atomic coordinates, which do not happen under photo-
excitation on a short timescale. We conclude that the lattice
instability under photoexcitation does not originate from
the p orbital bonding as in thermal equilibrium, but rather,
the weakened interbilayer coupling which suppresses the
frequency of the TðcÞ propagated along ðh00Þ, and
destabilizes the structure. Density functional theory based
calculations in Ref. [27] suggest a relatively high electronic
density of the Sn 5s-Se 4px orbital localized near the area
pointed by the black arrow in Fig. 1(a), close to d4. We infer
that it is the depopulation of these orbitals that leads to the
relatively significant change in the interatomic interaction
of d4 bond. This is also supported by diffraction results in
Ref. [14], where the d4 is shown to experience a larger bond
angle change compared to other bonds.
We provide the first example where time-resolved dif-

fuse scattering investigates both the long-range and near-
neighbor interatomic interactions and helps associate the
interatomic force change with a photoinduced novel phe-
nomenon. The result may hold implications for the excited
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states in ferroelectrics and phase change materials, where
the electron redistribution significantly impacts the lattice
dynamics, and the structural change may couple to bonding
type change. We point out that time-resolved x-ray scatter-
ing can provide insight into renormalized effective inter-
actions in light-engineered materials or materials whose
order gets quenched by light [13,57]. We suggest that time-
resolved x-ray scattering which measures both atomic
positions and lattice dynamics upon short-pulse excitation,
can reveal the interplay between electron distribution and
interatomic bonding, as well as their cooperative effects on
lattice structure, paving the way to controlling materials
properties under nonequilibrium conditions.
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