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We show how a quantum optical measurement scheme based on heterodyne detection can be used to
explore geometrical and topological properties of condensed matter systems. Considering a 2D material
placed in a cavity with a coupling to the environment, we compute correlation functions of the photons
exiting the cavity and relate them to the hybrid light-matter state within the cavity. Different polarizations of
the intracavity field give access to all components of the quantum geometric tensor on contours in the
Brillouin zone defined by the transition energy. Combining recent results based on the metric-curvature
correspondence with the measured quantum metric allows us to characterize the topological phase of the
material. Moreover, in systems where Sz is a good quantum number, the procedure also allows us to extract
the spin Chern number. As an interesting application, we consider a minimal model for twisted bilayer
graphene at the magic angle, and discuss the feasibility of extracting the Euler number.
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Introduction.—Geometrical and topological properties
of Bloch states play an important role in modern condensed
matter physics [1,2]. A prominent manifestation of a global
topological property is the quantized value of the Hall
conductivity, as obtained by linear response calculations
[3,4]. Quantum geometry, on the other hand, refers to
quantities that are local in momentum space, such as the
Berry curvature and quantum metric [5]. They are related to
topology, but also influence the motion of electrons in the
Brillouin zone (BZ) [6,7], nonlinear optical responses [8–
13], and flat-band superconductivity [14,15].
Since the relation between geometry, topology, and

observable quantities is often not obvious, it is important
to identify experimental probes which allow us to measure
these quantities, or at least provide relevant bounds [16]. To
this end, several schemes utilizing linear response for the
measurement of quantum geometry have been proposed
[16–20]. However, while the spectroscopy of topological
states of matter using semiclassical descriptions has been
studied extensively [19–24], the quantum optics side is less
explored. In quantum optics, entanglement between light
and matter can lead to novel phenomena [25–28], and it can
imprint properties of the matter system into the photon
field. Since current-current correlation functions are fun-
damentally linked to the quantum metric [29,30], this
suggests that the study of photon correlation functions
of a cavity system provides a potentially fruitful avenue for
probing a material’s geometrical and topological properties.
Here, we propose a quantum optical measurement

scheme based on heterodyne detection [31,32]. The idea
is to access general photon correlation functions inside a
cavity, enabled by a coupling between the cavity and the

environment, while a second photon field is superimposed
on the field emitted from the cavity in order to slow down
the time dependence of the signal. We demonstrate that
such correlation functions can be directly related to the
quantum geometric tensor, a quantity which encompasses
both the Berry curvature and quantum metric. The latter is
related to topology via the localization dichotomy
[5,33,34]. Lastly, our method also provides an energy

FIG. 1. (a) Proposed heterodyne detection setup with the cavity
depicted on the left. The electric field exiting the cavity (red)
impinges on a beam splitter along with a coherent laser source
(blue) to produce a superimposed signal which is detected at two
photodetectors (right and bottom right). (b) Depiction of the
hybrid light-matter state arising from the cavity light-matter
coupling (parameter λ). (c) k-space contours in a multiband
model defined by a fixed excitation energy ω.
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resolution which allows us to devise useful bounds on
topological invariants of 2D systems.
Setup.—The heterodyne detection setup is sketched in

Fig. 1(a). A Fabry-Perot cavity containing a 2D material is
coupled to the environment, enabling an electric field to be
transmitted through it while picking up signatures of the
hybrid light-matter state within the cavity [35] [Fig. 1(b)].
(To avoid complications related to edge states, we may
assume that the edges of the material are outside the cavity.)
By placing a 50∶50 beam splitter behind the output port
and superimposing a second coherent laser source—hence-
forth referred to as the local oscillator (LO)—it is possible
to slow down the signal emitted from the cavity. This
allows us to bypass limitations in the time resolution of
photodetectors, which is the goal of heterodyne detection
[31,32,36], and enables the measurement of various photon
correlation functions in the two detectors denoted by “D” in
Fig. 1(a) [32,36,37].
We begin by describing the intracavity Hamiltonian

which can be decomposed as Ĥcav ¼ Ĥfree þ ĤI þ Ĥmat.
The free cavity field is described by Ĥfree ¼ ℏΩâ†â, with â
the photon annihilation operator and Ω the cavity fre-
quency, while Ĥmat refers to the Hamiltonian of the electron
system. The light-matter coupling in the Coulomb gauge
and in the single-mode approximation reads

ĤI ¼ −
q
m
Â ·

X
k;αβ

ĉ†k;αhψk;αjp̂jψk;βiĉk;β

þ q2

2m
Â2

X
k;α

ĉ†k;αĉk;α; ð1Þ

where q and m represent the electron’s charge and mass,
respectively, Â ¼ λ½f âþ f �â†� the vector potential treated
within the dipole approximation, λ the light-matter cou-
pling parameter, and f ¼ ðfx; fyÞ the mode function of the
vector potential. ĉ†k;α is the creation operator of an electron
in the Bloch state jψk;αi, and the material is represented in
this basis by a noninteracting N-band model Ĥmat ¼P

k

P
N
α¼1 ϵαðkÞĉ†k;αĉk;α with M occupied bands. juk;αi ¼

e−ik·r̂jψk;αi and ϵαðkÞ are solutions to the eigenvalue
equation ĤðkÞjuk;αi ¼ ϵαðkÞjuk;αi. The light-matter cou-
pling in the cavity gives rise to a hybrid matter-photon state,
which manifests itself in the correlator of the intracavity
photon mode,

hâ†ðtÞâðt0Þi−hâ†ðtÞihâðt0Þi

≈
�
qλ
ℏ

�
2X

k

XM
α¼1

XN
β¼Mþ1

eiϵβαðkÞtrelfμfν�Aα;β
μ ðkÞAβ;α

ν ðkÞ; ð2Þ

where h� � �i is computed over the density matrix of the
cavity according to the Gell-Mann low theorem [38] by
adiabatically switching on ĤI , and ϵβαðkÞ≡ ð1=ℏÞ½ϵβðkÞ −
ϵαðkÞ� is the k-dependent valence-conduction-band gap.

trel ≡ t − t0 andAμ
αβðkÞ ¼ huk;αji∂μjuk;βi (with ∂μ ¼ ∂=∂kμ)

the non-Abelian Berry connection. We use the Einstein
summation convention for the spatial indices μ, ν.
Equation (2) neglects a higher-order term in λ and is valid
in the regime Ω ≪ mink∈BZjϵα;βðkÞj, i.e., away from
topological transitions (see Supplemental Material [39],
which includes Refs. [17,40–51], for details as well as
realistic estimates of these parameters).
Our goal is to connect the intracavity correlator (2) to the

detected photons in the setup of Fig. 1(a). To this end, we
employ the theory of photodetection [32] and input-output
theory [52], which yields

nðt;ΔtÞnðt0;ΔtÞ − nðt;ΔtÞ · nðt0;ΔtÞ
nðt;ΔtÞ

≈D
X
k

XM
α¼1

XN
β¼Mþ1

½ei(ϵβαðkÞ−ωL)trel þ H:c:�

× fμfν�Aα;β
μ ðkÞAβ;α

ν ðkÞ ð3Þ

for the correlations between the photon counts nðt;ΔtÞ at a
single detector; see Supplemental Material [39]. The
frequency of the local oscillator is ωL and coefficients
related to the input-output theory and beam-splitter rela-
tions are subsumed into the coefficient D.
Equation (3) provides a direct link to the non-Abelian

quantum geometric tensor (QGT),

Qαβ
μνðkÞ ¼

XN
γ¼Mþ1

Aαγ
μ ðkÞAγβ

ν ðkÞ ¼ gαβμνðkÞ − i
2
F αβ

μνðkÞ; ð4Þ

which can be decomposed into the quantum metric [gαβμνðkÞ]
and Berry curvature [F αβ

μνðkÞ] contributions. In these
expressions, μ; ν ¼ x; y and α; β∈ ½1;M�. Since
fμfν�

P
k Trb½QμνðkÞ� with Trb½…� ¼ P

M
α¼1½…� can be

measured by Eq. (3), we gain access to (i) the Chern
number if f↻ð↺Þ ¼ ð1;�iÞ, (ii) general diagonal compo-
nents of Q if f ¼ ð1; 0Þ or (0,1), and (iii) off-diagonal
elements of g if f� ¼ ð1;�1Þ in a way analogous to
interband transitions driven by classical light [16,21,53,54].
For illustrative purposes, let us consider ωL ¼ 0. Since

ϵβαðkÞ > 0, a Fourier transform of the first term on the
right-hand side of Eq. (3) would select contours in the BZ
with fixed energy difference ω and sum up the values of
fμfν�Aα;β

μ ðkÞAβ;α
ν ðkÞ at the corresponding k-points. This is

shown in Fig. 1(c) for two different ω’s represented by red
and blue colors. The role of ωL is to lower the frequencies
at which these resonances occur, consistent with the goal of
heterodyne detection [31].
Band topology and localization dichotomy.—The pos-

itive semidefinite nature of QμνðkÞ implies certain inequal-
ities involving the quantum metric and topological
invariants [33,55]. The inability to devise a smooth gauge
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of Bloch functions in a nontrivial topological phase is an
obstruction to creating maximally localized Wannier func-
tions [56]. Since the Wannier spread is directly related to
the quantum metric [34], we will utilize this localization
dichotomy [57] to relate Eq. (3) to topological invariants.
From now on, we will use integrals whenever discussing
topological invariants, but leave the discrete sums in Eq. (2)
to enable a finite system description. For Chern insulators
in 2D, the localization dichotomy manifests itself in bounds
for the Chern number C ¼ ð1=2πÞ R d2kTrb½F xyðkÞ� [33] as

πjCj ≤ volg ≤ volg̃; ð5Þ

where the so-called complexity of the band volg ¼R
d2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfTrb½gðkÞ�g

p
measures the BZ area with

respect to the quantum metric [34] and volg̃ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
d2kTrb½gxxðkÞ�

R
d2kTrb½gyyðkÞ�−fR d2kTrb½gxyðkÞ�g2

q
.

Similarly, for the most commonly studied model of twisted
bilayer graphene (TBG) with two occupied bands, it has
been shown [55] that

1

4π

Z
d2kTrb½gxxðkÞ þ gyyðkÞ� ≥ je2j; ð6Þ

where e2 is the Euler number, a topological invariant
found in models with C2zT symmetry [58,59]. SinceR
d2kTrb½gμνðkÞ� can be determined by the photon corre-

lation measurements, Eq. (3), we can in both cases provide
an upper bound to the topological invariant.
Inequalities involving the spin Chern numbers.—While

Z2 insulators have zero Chern number [60,61], it is
interesting to ask whether our method can provide infor-
mation on the spin Chern number, which we define as
Cs ¼ C↑ − C↓. This is meaningful if the model Hamiltonian

is of the form ĤðkÞ ¼ diag½h↑ðkÞ; h↓ðkÞ�≡ diag½hðkÞ;
h�ð−kÞ�. For such a model with time reversal symmetry
(TRS) and inversion symmetry (IS), we can prove the
following chain of inequalities:

πjCj ≤ πðjC↑j þ jC↓jÞ ¼ 2πjCσj ≤
Z

d2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfTrb½gðkÞ�g

p

¼ 2

Z
d2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfTrα½gðασÞ;ðασÞðkÞ�g

q
:

ð7Þ

TRS and IS imply gðα↑Þ;ðα↑ÞðkÞ ¼ gðα↓Þ;ðα↓Þð−kÞ and
gðασÞ;ðασÞð−kÞ ¼ gðασÞ;ðασÞðkÞ, which gives gðα↑Þ;ðα↑ÞðkÞ ¼
gðα↓Þ;ðα↓ÞðkÞ. Together with Eq. (5), this establishes that
πjCσj ≤ 1

2
volg ≤ 1

2
volg̃ (see Supplemental Material [39]).

Improved bounds from energy resolution.—We now
explore the potential of energy-resolved measurements,
as sketched in Fig. 1(c), for the extraction of the quantum

geometry. The energy resolution allows us to insert
additional inequalities into Eqs. (5) and (6), which enables
a more complete characterization of the topology of
the system. From Eq. (3) we can extract the QGT at
isoenergy surfaces {k∈BZ; ϵβαðkÞ − ωL ¼ ω; α∈ ½1;M�
and β∈ ½M þ 1; N�} corresponding to the contribu-
tion

R
d2k

P
α;β δ(ω − ½ϵβαðkÞ − ωL�)fμfν�Aαβ

μ ðkÞAβα
ν ðkÞ.

Employing the Cauchy-Schwarz inequality, we find that

Z
∞

−∞
dω

�
ΞxxðωÞΞyyðωÞ −

�
ReΞxyðωÞ

�
2
�
1=2 ≡ Iub ≤ volg̃;

ð8Þ

where ΞμνðωÞ≡P
M
α¼1

P
N
β¼Mþ1

R
d2kδ(ω − ½ϵβαðkÞ−

ωL�)Aαβ
μ ðkÞAβα

ν ðkÞ. Similarly, we can derive an upper
bound to πjCj,

πjCj ≤
Z

∞

−∞
dω

		ImΞxyðωÞ
		≡ Ilb: ð9Þ

Ilb is a strict upper bound for πjCj if ImΞxyðωÞ evaluates to a
negative number on certain isoenergy surfaces. Although
we have established that

πjCj ≤ Ilb and Iub ≤ volg̃; ð10Þ

we are only able to prove the inequality Ilb ≤ volg ≤ Iub in
the case of a two-band system. Nevertheless, the knowl-
edge of Ilb and Iub enables a more precise characterization
of geometrical properties.
Additional information from quantum metric bounds.—

As a minimal model of a Chern insulator, we consider the
Qi-Wu-Zhang (QWZ) model [62] which corresponds to
hðkÞ ¼ dðkÞ · σ with dðkÞ¼ ½sinðkxÞ;sinðkyÞ;uþ cosðkxÞþ
cosðkyÞ� in the space of s and p orbitals. The model
displays a nontrivial phase with jCj ¼ 1 if the staggered on-
site potential u∈ ½−2; 2�, while C ¼ 0 otherwise. A nonzero
spin-orbit coupling (SOC) can be modeled by defining
ĤðkÞ ¼ diag½hðkÞ; h�ð−kÞ� − Δsyσy, where sy is a Pauli
matrix in spin space. We will refer to this model as the SOC
model in the following.
QWZ and SOC models.—Figures 2(a) and 2(b) show

results for the model without and with spin-orbit coupling,
respectively. As is evident from Fig. 2(a), the second
inequality in Eq. (10) is saturated for the QWZ model,
while, on the other hand, Ilb ¼ volg holds at most values of
u. This is related to the metric-curvature correspondence
noted in Ref. [33], which for the case of two bands isffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞp ¼ jF xy=2j. The fact that Ilb ¼ volg does not hold

at all values of u can be attributed to sign changes of F xy

along isoenergy surfaces (see Supplemental Material [39]).
As shown in Fig. 2(b), the introduction of a small SOCΔ

leads to a more pronounced peak structure of volg̃ near
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u ¼ 2. The band touching at ðπ; πÞ turns into a band
touching at several momentum points once the spin
degeneracy of the model is lifted, which subsequently
contributes to a larger QGT. Nevertheless, we still find that
ð1=2πÞvolg̃ provides a useful upper bound of Cσ away from
the transition.
Three-band model.—Next, we analyze the three-

band model from Ref. [33] with Ĥ11ðkÞ ¼
−2tdd( cosðkxÞ þ cosðkyÞ) þ δ, Ĥ12ðkÞ ¼ Ĥ21ðkÞ� ¼
2itpd sinðkxÞ, Ĥ13ðkÞ¼Ĥ31ðkÞ�¼2itpdsinðkyÞ, Ĥ22ðkÞ ¼
2tpp cosðkxÞ − 2t0pp cosðkyÞ, Ĥ23ðkÞ ¼ Ĥ32ðkÞ� ¼ iΔ,
Ĥ33ðkÞ ¼ 2tpp cosðkyÞ − 2t0pp cosðkxÞ, tdd¼ tpd ¼ tpp¼ 1,
and δ ¼ −4tdd þ 2tpp þ Δ − 2tppΔ=ð4tpp þ ΔÞ, t0pp ¼
tppΔ=ð4tpp þ ΔÞ and compute the QGT with respect to
the lowest band. Figure 2(c) shows that—similar to the
QWZmodel—Ilb closely follows volg over the entire trivial
phase, and to some extent also in the nontrivial phase. Sinceffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞp

can differ from jF xyj=2 in models with more than
two bands, Ilb is not a good estimate of volg. Still, Ilb can be
used to estimate the location of the topological transition
with high accuracy.

Twisted bilayer graphene.—As a further application, we
consider the four-band tight-binding model of TBG from
Ref. [55],

ĤðkÞ ¼ μzðΔσ0 þ ξσzÞ þ μ0ρðkÞ · σ − 2λμyσzfðkÞ; ð11Þ

where μð0Þ;x;y;z and σð0Þ;x;y;z are (identity matrices)
Pauli matrices acting in the space of orbital and sub-
lattice degrees of freedom, respectively. ρ1;2ðkÞ ¼P

3
i¼1½t cos = sinðδi · kÞ þ t0 cos = sinð−2δi · kÞ�, ρ3ðkÞ ¼ 0,

and fðkÞ ¼ P
3
i¼1 sinðdi · kÞ. With a1;2 representing the

real-space moiré lattice unit vectors, we have the near-
est-neighbor vectors δ1 ¼ 1

3
a1 þ 2

3
a2, δ2 ¼ − 2

3
a1 − 1

3
a2,

δ3 ¼ 1
3
a1 þ 2

3
a2 and the second-nearest-neighbor vectors

d1 ¼ a1, d2 ¼ a2, d3 ¼ −a1 − a2. In order to make the
bands as flat as possible, Xie et al. chose t0 ¼ −ðt=3Þ,
λ ¼ ð2= ffiffiffiffiffi

27
p Þt, andΔ ¼ 0.15t with t ¼ 1 [55]. A nonzero ξ

opens a gap between the otherwise degenerate occupied
and unoccupied bands atK, rendering the topological phase
trivial [see Fig. 3(a)].

FIG. 2. Chern numbers and various bounds for (a) the QWZ model and (b) the SOC model with Δ ¼ 0.1 and (c) the result of the three-
band model. All quantities of Eq. (10) are plotted as a function of the parameter uwhich controls the topological state of the models. The
hashed regions near the topological transitions roughly indicate the range of u where Eq. (3) is not valid. For computing Ilb and Iub we
approximate δðxÞ by ð1= ffiffiffi

π
p jajÞ expf−ðx=aÞ2g with a ¼ 0.1.

FIG. 3. Geometrical quantities for TBG plotted as a function of t0=t. The trivial phase is indicated with a blue shading; whenever one of
the plotted quantities drops below the light-blue line, Eq. (6) implies e2 ¼ 0. (a) Band structure in the trivial phase where the nodal point
at K is gapped due to ξ ¼ 0.8 (encircled points). (b) Trivial phase (e2 ¼ 0) with ξ ¼ 0.8. The inset shows the Wilson loop in the moiré
Brillouin zone for t0=t ¼ −0.4 (solid) and t0=t ¼ 1 (dashed) which are gapped for ξ ¼ 0.8. (c) Nontrivial phase (je2j ¼ 1) with ξ ¼ 0 and
unit winding of the Wilson loop for all values of t0=t.
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The nontrivial topology in this model manifests itself in
Wilson loop winding, which is seen as a crossing in the
loop diagrams shown in the insets of Fig. 3 [58,63]. In the
same figure, we present geometrical quantities for the two
phases of the model. In view of Eq. (6), Fig. 3(b) shows that
for most values of t0=t, we can determine whether the
system is in a topologically trivial state by looking at
momentum integrals over gii (i ¼ x, y).
In the nontrivial case depicted in Fig. 3(c), we see

the same trend of gii increasing with increasing
bandwidth, but notice a remarkable agreement between
ð1=4πÞ R d2kTrb½gxx þ gyy� and je2j at smaller bandwidths,
which is consistent with Ref. [18]. For the models con-
sidered in Ref. [33], the saturation of such inequalities was
found to be related to a small bandwidth or band-gap ratio,
which is consistent with the results in Fig. 3. We also
observe that ð1=2πÞvolg matches je2j almost perfectly for
all bandwidths in the nontrivial phase. Although the
relationship between ð1=2πÞvolg and je2j is unclear, we
numerically demonstrate that ð1=2πÞvolg provides an upper
bound to je2j for all t=t0.
Conclusions.—We devised a way of extracting quantum

geometry, and indirectly topology, by means of a cavity
QED setup combined with a heterodyne detection scheme
and the localization dichotomy. The power of this scheme
was demonstrated with applications to paradigmatic mod-
els hosting interesting geometry and topology. Utilizing the
energy resolution of the method we provided improved
markers of the system’s geometry. A future prospect is the
application of our scheme to 3D materials (thin films) with
nontrivial geometrical properties. While the Chern number
is not directly determined by the Berry curvature in 3D, the
delocalization of Wannier orbitals can be detected.
Furthermore, in systems with Berry curvature dipoles
and zero Chern number, the metric-curvature correspon-
dence still enables a characterization of the Berry curvature
dipole strength [64,65]. While the present study assumed
weak light-matter coupling, strong light-matter interactions
provide a pathway for engineering novel topological
phases [66]. In a future project, it would thus be interesting
to adapt Eq. (3) to the study of geometrical and topological
properties of such hybrid light-matter states.
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