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Producing compact voltage-controlled frequency generators and sensors operating in the terahertz (THz)
regime represents a major technological challenge. Here, we show that noncollinear antiferromagnets
(NCAFMs) with kagome structure host gapless self-oscillations whose frequencies are tunable from 0 Hz
to the THz regime via electrically induced spin-orbit torques (SOTs). The auto-oscillations’ initiation,
bandwidth, and amplitude are investigated by deriving an effective theory, which captures the reactive and
dissipative SOTs. We find that the dynamics strongly depends on the ground state’s chirality, with one
chirality having gapped excitations, whereas the opposite chirality provides gapless self-oscillations. Our
results reveal that NCAFMs offer unique THz functional components, which could play a significant role in
filling the THz technology gap.
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The terahertz (THz) technology gap refers to a frequency
range of electromagnetic radiation in the THz regime where
current technologies are inefficient for generating and
detecting radiation [1–3]. While traditional electronics
work well for producing and sensing microwaves and
optics typically operate in the infrared region, few devices
can utilize the THz range. THz devices are expected to have
widespread applications ranging from improving the sen-
sibility of biological and medical imaging techniques [4] to
enhancing the functionality of information and communi-
cation technologies [5]. Therefore, developing compact and
reliable THz components is one of the main challenges of
today’s electronics.
In this context, antiferromagnetic spintronics has posi-

tioned itself as a promising future technology due to the
intrinsic THz spin dynamics of antiferromagnets (AFMs)
[6–11]. Notably, several works have demonstrated that the
antiferromagnetic order couples to electric fields [12–27]—
either indirectly via electrically generated spin currents or
directly via spin-orbit torques (SOTs). This implies that it is
possible to manipulate AFMs by electric fields and that
AFMs can be used to modulate electric currents.
Specifically, the latter effect has been proposed as a possible
mechanism for developing nanoscale THz generators
[28–36]. The nano-oscillators use dc electric fields to create
self-oscillations in the AFM, which are sustainable cyclic
modulations of the spin order driven without the stimulus of
an external periodic force. The self-oscillations act back on
the electronic system, producing a THz electric output
signal. Generally, there exists a frequency window in which
both the amplitude and frequency of the ac output signal are
tunable via the electric field. This frequency window

represents the bandwidth of the nano-oscillators. The ability
to maintain and control the self-oscillations over a broad
range of frequencies is critical for the applicability of the
nano-oscillators [37,38].
Previous works on AFM nano-oscillators have been

theoretical and concentrated on so-called collinear
AFMs [28–34], i.e., spin systems characterized by an
antiparallel arrangement of the neighboring magnetic
moments. However, in several AFMs, the spin sublattices
are noncollinearly ordered. These spin systems are known
as noncollinear AFMs (NCAFMs). In contrast to the
collinear AFMs, where a staggered field parametrizes the
spin order [39], a rotation matrix describes the spin order of
NCAFMs [40]. Consequently, the NCAFMs exhibit more
complex and intriguing spin physics than most ferromag-
nets and collinear AFMs. For example, recent works have
revealed novel topological phenomena [41] and a signifi-
cant spin Hall effect [42,43]. However, despite the great
interest in NCAFMs, their current-driven self-oscillations
remain largely unexplored [35].
Here, we investigate the SOT-driven self-oscillations in a

trilayer system consisting of a thin-film NCAFM with a
kagome structure sandwiched between two metals. The
external electric field is applied perpendicular to the thin-
film plane [see Fig. 1(a)]. Surprisingly, we find that the
dynamics of the self-oscillations strongly depend on the
chirality set by the relativistic Dzyaloshinskii-Moriya
interaction (DMI) of the system. Despite the large in-plane
and out-of-plane magnetic anisotropies, we show that one
of the two chiral structures hosts gapless self-oscillations
that are highly tunable via intrinsic SOTs. In contrast, the
structure of opposite chirality has gapped oscillations.
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Notably, the gapless oscillations enable voltage-controlled
NCAFM nano-oscillators with exceptional bandwidths,
where the frequency is tunable from 0 Hz to the THz
regime via the applied dc electric field. Our results, thus,
demonstrate that the NCAFMs offer distinct chiral mag-
netic properties that are particularly attractive for bridging
the gap between technologies operating in the microwave
and infrared regions.
The material systems we consider are thin-film kagome

AFMs, where the mirror symmetry of the kagome lattice
plane is broken. These systems are described by the point
group D6 [44]. Important candidate materials include
Mn3X (X ¼ Ga, Ge, Sn), which in isolation are charac-
terized by the point group D6h [45], sandwiched between
two different metals. The broken spatial inversion sym-
metry of the system has two significant consequences: (i) It
leads to a magnetoelectric effect and (ii) it induces a DMI.
The main effect of the DMI is that it determines the
chirality of the ground state [see Figs. 1(b) and 1(c)]. The
magnetoelectric effect refers to the out-of-equilibrium spin
density produced by electric fields [46], which in magnetic
systems yields an SOT [47–50]. Below, we start by deriving
the magnetoelectric effect of NCAFMs with D6 symmetry
from symmetry arguments [51]. Then, based on the
symmetry analysis, we phenomenologically add the cou-
pling terms between the spin system and electric field in a
microscopic model, which is used as the starting point
for deriving an effective action and dissipation functional
of a uniform NCAFM. Furthermore, the effective
theory is applied to investigate the voltage-controlled self-
oscillations.
In linear response, the out-of-equilibrium spin density s

produced by the electric field E is given by [46]

si ¼ ηijEj: ð1Þ

Here, ηij is a second-rank axial tensor, which satisfies the
following symmetry relationships [48,49]:

ηij ¼ jGjGii0Gjj0ηi0j0 ; ð2Þ

dictated by the generators G of the system’s point group.
jGj represents the determinant of the symmetry operation
G. Throughout, we apply Einstein’s summation convention
for repeated indices. For kagome AFMs described by the
point group D6, the symmetry relations in Eq. (2) imply that
ηij is diagonal and parametrized by two independent
parameters [52]: ηxx ¼ ηyy ≡ η⊥ and ηzz ≡ ηz. Here, the
x and y axes span the kagome plane, whereas the z axis is
perpendicular to the lattice plane [Fig. 1(a)]. Consequently,
the out-of-equilibrium spin density produced by the electric
field can be written as0
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Interestingly, we see that the electric field in kagome AFMs
can polarize the spin density along any axis (also the out-
of-plane axis z). This is different from most thin-film
systems, which usually are characterized by Dresselhaus or
Rashba SOC, where the electric field generates only spin
densities polarized along an in-plane axis of the thin-film
magnet [47–49]. In what follows, we investigate how the
spin density (3) couples to the NCAFM.
The kagome AFM is modeled by the spin Hamiltonian

H ¼ He þHa þHD þHE : ð4Þ

Here, He ¼ J
P

hιι̃i Sι · Sι̃ describes the isotropic exchange
interaction (J > 0) between the neighboring lattice sites
hιι̃i, whereas Ha ¼

P
ι½KzðSι · ẑÞ2 − KðSι · n̂ιÞ2� represents

the easy axes (K > 0) and easy plane (Kz > 0) anisotropy
energies. The unit vector n̂ι denotes the in-plane easy axis
at lattice site ι. The kagome AFM consists of three spin
sublattices with in-plane easy axes n̂1 ¼ ½0; 1; 0�, n̂2 ¼
½ ffiffiffi

3
p

=2;−1=2; 0�, and n̂3 ¼ ½− ffiffiffi
3

p
=2;−1=2; 0�, respectively

[Figs. 1(b) and 1(c)].HD ¼ P
hιι̃iDιι̃ · ðSι × Sι̃Þ is the DMI,

where Dιι̃ ¼ Dzẑ [53]. HE ¼ −
P

ι grSι · ηE expresses the
reactive coupling to the electric field, where gr is the
coupling strength.
The ground state of the spin Hamiltonian (4) depends on

the ratio Dz=K. If Dz=K < 1=4
ffiffiffi
3

p
, the spins are aligned

parallel or antiparallel to the in-plane easy axes, i.e., Sι ¼
�Sn̂ι [see Fig. 1(b)]. We will refer to these two ground
states as (þ) chiral. On the other hand, if Dz=K > 1=4

ffiffiffi
3

p
,

the spins attain a configuration of opposite chirality, which
we will refer to as having (−) chirality [Fig. 1(c)]. The

FIG. 1. (a) A kagome AFM with broken mirror symmetry
sandwiched between two metals. An electric field combined with
spin-orbit coupling (SOC) generates an out-of-equilibrium spin
density s collinear with the electric field, which can drive self-
sustained oscillations in the AFM. (b) [(c)] A spin configuration
with (þ) chirality [(−) chirality]. The phase hosts gapped
(gapless) self-oscillations corresponding to a rotation θðtÞ of
the sublattice spins about z.
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(−)-chiral configuration is related to (þ)-chiral structure by
a reflection about the xz plane.
The dynamics of the spin system is described by the

action S ¼ P
ι ℏ

R
dtAðSιÞ · Ṡι −

R
dtH and the dissipation

functional G¼P
ιℏ
R
dt½ðαG=2ÞṠ2ι þgdṠι·ðηE×SιÞ� [54–58].

Here, Ṡι ≡ ∂tSι, A is defined via ∇ × AðSιÞ ¼ Sι=S, αG is
the Gilbert damping parameter, and the term proportional to
gd characterizes the dissipative coupling to the current-
induced spin density. To derive an effective description of
the dynamics, it is convenient to express the three sublattice
spins as [54]

SιðtÞ ¼
SRðtÞ½n̂ι þ aLðtÞ�
kn̂ι þ aLðtÞk ; ι∈ f1; 2; 3g: ð5Þ

In Eq. (5), the rotation matrix RðtÞ∈SOð3Þ is the
NCAFM’s order parameter, whereas the vector aLðtÞ
represents a spatial uniform small tilting (i.e., kaLk ≪ 1)
of the spins. The parameter a is the lattice constant.
The effective action Seff for the order parameter R is

obtained by substituting Eq. (5) into the action and
expanding it to second order in the time variation Ṙ and
aL [54–59]. Minimizing the resulting action with respect to
L yields an expression for the tilting field [59]:

aL ¼ ΛRTðγ0ωþ γrηEÞ; ð6Þ

where γ0 ¼ ℏ=6SJ, γr ¼ gr=6SJ, and Λ is a diagonal
matrix with the elements Λxx ¼ Λyy ¼ 2 and Λzz ¼ 1.
The vector ω represents the angular velocity of the
NCAFM and is governed by the time variation of R:

ωi ¼ −
1

2
ϵijk½ṘRT �jk: ð7Þ

The symbol ϵijk denotes the Levi-Civita tensor. Because L
is fully determined by R and E, it is possible to eliminate
the tilting field from Seff by substituting Eq. (6) back into
the action, which leads to the following expression in the
continuum limit [59]:

Seff ¼
Z

dtdA
�
m
2
ω2 þ ω · η0E − κklpnRklRpn

�
: ð8Þ

Here, m ¼ 2ℏ2=
ffiffiffi
3

p
Ja2 is proportional to the moment

of inertia of the AFM, η0 ¼ ℏgrη=2acJ, and the
anisotropy tensor is κklpn ¼ νklpn þ dklpn, where
νklpn ¼

P
ι¼1;2;3½K̃znιlnιnδzpδzk − K̃nιpnιnnιknιl� (δij is

the Kronecker delta) and dklpn ¼ ð2=3 ffiffiffi
3

p ÞD̃zϵzkp
½n1ln3n þ n2ln1n þ n3ln2n�. The anisotropy constants are
K̃z ¼ KzS2=ac, K̃ ¼ KS2=ac, and D̃z ¼ 3

ffiffiffi
3

p
S2Dz=ac,

where ac ¼ a2
ffiffiffi
3

p
=4 is the area of the 2D unit cell. In

Eq. (8), we integrate over the area of the thin-film AFM.

Using Eq. (5), a similar expansion of G to second order in
Ṙ and aL yields the effective dissipation functional [59]

Geff ¼
Z

dtdA

�
α

2
ω2 þ βω · η0E

�
; ð9Þ

where α ¼ 3ℏS2αG=ac is the effective damping coefficient
and the parameter β ¼ 6S2Jgd=gr expresses the ratio
between the dissipative and reactive torques.
Equations (6)–(9) represent the first central result of this

Letter and provide an effective theory of a kagome AFM
coupled to an electric field via the intrinsic SOC. The
equations of motion follow from varying the action and
dissipation with respect to R. In the following, we para-
metrize the rotation matrix by nautical angles [65]:

R ¼ RzðθÞRyðϕÞRxðψÞ: ð10Þ

Here, ψðtÞ, ϕðtÞ, and θðtÞ determine the rotation angles
about the x, y, and z axis, respectively. In this representa-
tion, the equations of motion of the AFM becomes

δSeff

δϑ
¼ δGeff

δϑ̇
; ϑ∈ fψ ;ϕ; θg: ð11Þ

Next, we investigate how a dc electric field along z, i.e.,
E ¼ Eẑ, can be applied to drive sustainable self-
oscillations. To this end, we first establish the electric
threshold value Ec for initiating the self-oscillations before
we determine how the electric field can be used to control
the frequency and amplitude of the oscillations.
To derive Ec, we consider small deviations away from

the ground state and expand the action and dissipation to
second order in the nautical angles. In this approximation,
the anisotropy in Eq. (8) can be written as κklpnRklRpn ¼
ð1=2ÞΩ ·Kð�ÞΩ, whereas the angular velocity in Eq. (7)
becomes ω ¼ Ω̇þ ð1=2ÞΩ × Ω̇. Here, Ω ¼ ½ψ ;ϕ; θ� and
the tensor Kð�Þ is diagonal with the elements KðþÞ

xx ¼
KðþÞ

yy ¼ 3ðK̃ þ K̃zÞ − D̃z and KðþÞ
zz ¼ 6K̃ for the expansion

around the state with (þ) chirality and Kð−Þ
xx ¼ Kð−Þ

yy ¼
3ðK̃ þ 2K̃zÞ=2þ D̃z and Kð−Þ

zz ¼ 0 for the state with (−)
chirality. Varying the resulting action and dissipation
functionals yields the linear equation:

mΩ̈¼ −Kð�ÞΩ− αΩ̇þ Ω̇× η0E − β

�
1−

1

2
Ω×

�
η0E: ð12Þ

We notice from Eq. (12) that the ground state with (−)
chirality hosts gapless excitations because Kð−Þ

zz ¼ 0. The

anisotropy constant Kð−Þ
zz is zero, because the Hamiltonian

(4) is invariant under rotation of the (−)-chiral state in the
kagome plane [66]. Thus, the excitations correspond
to rotations of the spins by an angle θ about the z axis
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[Figs. 1(b) and 1(c)]. Importantly, the gapless excitations

imply a zero threshold value Eð−Þ
c ¼ 0 for initiating self-

oscillations in the (−)-chiral state. This is surprising, as the
system is highly anisotropic with three in-plane easy axes
as well as out-of-plane anisotropy.
In the (þ)-chiral state, all excitations are gapped by the

magnetic anisotropy. To find EðþÞ
c , we substitute the ansatz

ΩðtÞ ∼Ω0 expðiωtÞ into Eq. (12) and solve the equation

ℑ½ωðEðþÞ
c Þ� ¼ 0 [59]. In summary, we find the following

threshold values for the (�) chiralities:

Eð�Þ
c ¼ 2ασð�Þ

η0;zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKðþÞ

xx

ðmβ − αÞ2 − α2

s
; ð13Þ

where σðþÞ ¼ 1 and σð−Þ ¼ 0. For the (þ)-chiral state,
Eq. (13) is supplied by the additional constraint
mβ=α ∉ ½0; 2�. In the interval mβ=α∈ ½0; 2�, the dissipative
torque is incapable of destabilizing the ground-state con-
figuration and producing self-oscillations. Below the

threshold value EðþÞ
c , the only effect of the electric field

is to slightly rotate the ground-state configuration by an

angleΩ� ¼ −βA−1η0E. Here, Aij ¼ KðþÞ
ij þ βϵikjη0;kkEk=2.

There also exists an upper critical value Eð�Þ
f where the

electric field destroys the oscillations and drives the
NCAFM into a ferromagnetic phase [59,67]:

Eð�Þ
f ¼ Sð6J þ 2Kz þ K ∓ 2

ffiffiffi
3

p
DzÞ

ηzzðgr þ ℏgd=αGÞ
: ð14Þ

Furthermore, we examine how the electric field can
control the frequency and amplitude of the self-oscillations.
A numerical solution of the full nonlinear equation of
motion (11) based on Eqs. (8) and (9) shows that both
ground states with (�) chirality, respectively, evolve into a
steady-state oscillation θðtÞ around the z axis with ψ ¼
ϕ ¼ 0 when E > Eð�Þ

c [Figs. 2(a) and 2(b)]. Consequently,
both chiralities are above the threshold characterized by the
single nautical angle θðtÞ, and the dynamics of the auto-
oscillations are captured by the ansatz θ ¼ θðtÞ and
ψ ¼ ϕ ¼ 0. Upon substitution into Eqs. (8) and (9), the
ansatz yields the following equation of motion (11):

mθ̈ ¼ −3σð�ÞK̃ sinð2θÞ − αθ̇ − βη0;zzE: ð15Þ

Equation (15) is identical to the equation of a point mass m
experiencing the periodic potential −ð3K̃=2Þ cosð2θÞ, fric-
tion −αθ̇, and dissipative force −βη0;zzE. Because σð−Þ ¼ 0,
the steady-state frequency θ̇ of the (−)-chiral state is easily
extracted from Eq. (15) as the terminal velocity where the
friction balances the dissipative force. This terminal veloc-
ity also corresponds to the time-averaged frequency of
the (þ)-chiral state, which can be calculated by averaging

Eq. (15) over one cycle. Hence, for both chiralities, the
relationship between the average frequency and the driving
electric field becomes

hθ̇ið�Þ ¼ −
βη0;zzE

α
: ð16Þ

Note that the self-oscillations of the (þ)-chiral state can be
maintained by a lower electric field strength E0 than the

field EðþÞ
c required for initiating the oscillations. A similar

phenomenon also appears in collinear AFMs [29].
At the subthreshold field E0, the work done by the
dissipative force −βη0;zzE equals the energy loss due to
friction for the slowest possible oscillation [i.e., the
oscillatory motion where θ̇ ¼ 0 at the energy maxima of
the potential −ð3K̃=2Þ cosð2θÞ]. This requirement leads to

the subthreshold field jE0j ¼ 2α
ffiffiffiffiffiffiffi
6K̃

p
=π

ffiffiffiffi
m

p jβη0;zzj.
Thus, we find the following bandwidths of the auto-
oscillations:

hθ̇ið�Þ ∈ −
βη0;zz
α

½σð�ÞE0; E
ð�Þ
f �: ð17Þ

In the frequency intervals (17), the oscillation gradually
changes from a full in-plane rotation of the spins
into a conical motion where the base radius of the circular
cone depends on E [Fig. 2(c)]. The tilting out of the xy
plane (and, thus, the amplitude of the oscillation) is
determined by the vector aL, which in linear response
becomes

FIG. 2. (a) [(b)] Auto-oscillation in a (þ)-chiral [(−)-chiral]
state. Obtained by solving the nonlinear equations of motion (11)
based on Eqs. (8) and (9) with the parameter values J ¼ 10 meV,
K ¼ 0.03 meV, Kz ¼ 0.09 meV, Dz ¼ K=8

ffiffiffi
3

p
(Dz ¼ K=2

ffiffiffi
3

p
),

S ¼ 2.0, αG ¼ 0.01, t0 ¼ ℏ=S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðK þ KzÞ

p
, βt0 ¼ 10, and

E ¼ 2EðþÞ
c . The red line is the approximate solution θðtÞ ¼

hθ̇ið�Þt based on Eq. (16). (c) The self-oscillations are charac-
terized by an electrically controllable out-of-plane tilting aL of
the sublattice spins.
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haLi ¼
�
αγrηzz − γ0βη0;zz

α

�
Eẑ: ð18Þ

Equations (16)–(18) are the second central result of this
Letter and provide a novel theory of electrically tunable
nano-oscillators based on kagome AFMs.
The current-driven auto-oscillations, described by

Eqs. (16)–(18), hold great potential for generating THz
voltage signals. These oscillations stem from the aniso-
tropic magnetoresistance (AMR) effect, which occurs when
time variations in the spin system modulate the longitudinal
resistance. In our study, we anticipate that the longitudinal
resistance of the NCAFM is influenced by the nautical
angle θ and the tilting vector aL. This relationship can be
expressed asRðtÞ ¼ R0 þ δRðtÞ, whereR0 represents the
constant component of the longitudinal resistance and
δRðtÞ ¼ δR½θðtÞ; aLðtÞ� varies with time via θ and aL.
The time-varying term δR generates an ac voltage signal
Uac given by

UacðtÞ ¼ δRðtÞIdc; ð19Þ

where Idc represents the applied direct electric current. Note
that, in ferromagnets and collinear AFMs, the AMR effect
depends on only the relative angle between the current and
the order parameter vector, thus implying a vanishing ac
output signal for precessional modes having a constant
angle with respect to the applied current [such as the auto-
oscillation mode for the (−) chirality]. In collinear AFMs,
theoretical works have shown that an ac signal can be
achieved via interfacial spin filtering [28], in-plane
anisotropy [29], and domain wall structures [36].
However, NCAFMs have, in general, a much more com-
plex spin structure than ferromagnets and collinear AFMs,
parametrized by an SO(3)-valued order parameter field.
The AMR of NCAFMs is, therefore, anticipated to have a
highly nontrivial and anisotropic dependence on the ori-
entation of the underlying spin lattice. This has recently
been experimentally demonstrated for Mn3Ge [68].
Consequently, we expect that even highly symmetrical
auto-oscillation modes [such as the (−)-chirality mode]
could potentially lead to modulations of the longitudinal
resistance in Eq. (19).
The frequency and bandwidth of the generated voltage

signal (19) are determined by the angular velocity (16) and
the frequency window (17), respectively. To estimate the
characteristic frequency range of our nano-oscillator, we
assume that the NCAFM’s SOT is comparable to that of
(Ga,Mn)As [60], which yields the following values for the
reactive and dissipative torque parameters: grηzz=ℏ ¼
879.3 m=V s and gdηzz ¼ 367.2 m=V s. By utilizing these
values, along with the material parameters provided in
Fig. 2, we find the bandwidths to be hθ̇ið−Þ ∈ ½0; 1.8 ×
1014� rad=s and hθ̇iðþÞ ∈ ½3.7 × 1012; 1.8 × 1014� rad=s,

respectively, and an initiation frequency of ∼1.6 ×
1013 rad=s for the (þ) mode [59]. These estimations
demonstrate that NCAFM-based nano-oscillators offer a
unique frequency tunability, which is challenging to achieve
in other magnetic systems. It is noteworthy that NCAFMs
exhibiting D4 and D3 symmetry possess the same spin
density (3) and SOT as kagome AFMs. Consequently, we
anticipate that these material classes will show similar
current-driven auto-oscillations.
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