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Quantum impurity models (QIMs) are ubiquitous throughout physics. As simplified toy models they
provide crucial insights for understanding more complicated strongly correlated systems, while in their
own right are accurate descriptions of many experimental platforms. In equilibrium, their physics is well
understood and have proven a testing ground for many powerful theoretical tools, both numerical and
analytical, in use today. Their nonequilibrium physics is much less studied and understood. However,
the recent advancements in nonequilibrium integrable quantum systems through the development of
generalized hydrodynamics (GHD) coupled with the fact that many archetypal QIMs are in fact integrable
presents an enticing opportunity to enhance our understanding of these systems. We take a step towards this
by expanding the framework of GHD to incorporate integrable interacting QIMs. We present a set of Bethe-
Boltzmann type equations which incorporate the effects of impurity scattering and discuss the new aspects
which include entropy production. These impurity GHD equations are then used to study a bipartioning
quench wherein a relevant backscattering impurity is included at the location of the bipartition. The density
and current profiles are studied as a function of the impurity strength and expressions for the entanglement
entropy and full counting statistics are derived.
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Introduction.—The role of impurities in quantum phys-
ics has long been known to be central in our understanding
of physical phenomena. Classical scattering from impu-
rities in metals gives a finite lifetime to quasiparticles,
taming unphysical divergences in conductivities. Inter-
action between electrons and magnetic impurities leads
to the formation of clouds of many correlated particles
resulting in strongly correlated compounds [1]. Pronounced
effects in emission and absorption spectra are explained via
the orthogonality catastrophe, the thermodynamic vanish-
ing of overlaps between ground states of pure and impure
systems [2]. Quantum impurity models (QIMs) are sim-
plified versions of the above scenarios, consisting of a
single impurity with few degrees of freedom interacting
with a much larger environment, which capture the essen-
tial physics. They provide an ideal platform to study
strongly correlated phenomena such as dynamical scale
generation or asymptotic freedom and as such have become
a proving ground for many of the most widely used
nonperturbative techniques, both analytical and numerical,
of modern theoretical physics. They are also of interest in
their own right as quantum impurity systems are now
routinely engineered in the laboratory [3–8].
Equilibrium properties of QIMs are quite well under-

stood in large part due to the fact that many of the most
important examples are integrable [9,10]. These include the
well-known Kondo [11–13], Anderson [14,15], and Kane-
Fisher models [16,17], among others [18–29]. However,

experimental advances over recent decades have instigated
a shift away from studies of equilibrium phenomena to
those of far from equilibrium quantum physics and in
particular of integrable interacting models [30,31]. At the
same time key technical breakthroughs such as the quench
action method [32,33] and generalized hydrodynamics
[34,35] have facilitated our understanding of these systems.
These powerful analytical tools allow one to study the long
time behavior and emergent properties of nonequilibrium
systems and have been applied to a plethora of scenarios,
such as homogeneous [36–54] and inhomogeneous [55–77]
quantum quenches. Despite their huge success and wide-
spread use, however, these techniques have yet to be
applied to interacting quantum impurity systems. In this
Letter we take a step toward rectifying this and enlarge the
framework of generalized hydrodynamics (GHD) to incor-
porate integrable quantum impurities. This is done by
modifying the standard Bethe-Boltzmann–type equations
of GHD through the inclusion of an exactly determined
collision integral describing the integrable scattering with
the impurity (1). We make some nontrivial checks on the
resulting impurity GHD equations and comment on its new
features. Afterward we give an exact solution to these
equations for a bipartioning quench in which an interacting
backscattering impurity is located at the bipartition. From
this we calculate the density and current profiles as well
as their full counting statistics and the half system entan-
glement entropy. This represents a rare example of a
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nonequilibrium, interacting quantum impurity problem
which is analytically tractable.
Integrable impurity models.—Integrable quantum sys-

tems generically possess an extensive number of local
conserved charges which heavily impact upon the static and
dynamic properties of the system. Their spectra consist
of a set of stable quasiparticle species, parameterized by a
species index j and a rapidity λ and whose properties are
described through kinematic data which includes their
value under the conserved charges such as their energy
ϵjðλÞ and momentum pjðλÞ, in addition to the two-particle
scattering kernel TjkðλÞ. The state of a system is specified
by the types of quasiparticles present and in the thermo-
dynamic limit, this can be done through their distribution
in rapidity space, denoted by ρjðλÞ. It is also convenient
to introduce ρhj ðλÞ the distribution of unoccupied quasi-
particles as well as the occupation function ϑjðλÞ ¼
ρjðλÞ=ρtjðλÞ; ρtjðλÞ ¼ ρjðλÞ þ ρhj ðλÞ. These quantities are
not unrelated and obey the thermodynamic Bethe Ansatz
equations, a set of coupled integral equations arising
from the quantization conditions ρtjðλÞ ¼ jp0

jðλÞj=2π −P
k

R
dμTjkðλ − μÞρkðμÞ, with 0 denoting d=dλ. More-

over, in the presence of many excitations the quasiparticle
properties become dressed due to the interactions, e.g.,
ϵjðλÞ → ½ϵjðλÞ�Dr. To calculate these dressed quantities
it is convenient to introduce a second dressing ope-
ration, denoted by ½� � ��dr which is related to the physical
dressing by ½ϵjðλÞ�Dr ¼

R
λ dμ½ϵ0jðμÞ�dr and can be com-

puted through the integral equation ½ϵ0jðλÞ�dr ¼ ϵ0jðλÞ−P
k

R
dμTjkðλ − μÞϑkðμÞ½ϵ0jðμÞ�dr.

For an integrable QIM additional information is required
to describe the interaction between the bulk quasiparticles
and the impurity. This can be encoded via two different
bases: (i) the scattering basis or (ii) the diagonal basis.
In (i) the bulk quasiparticles are as described above and
their interaction with the impurity is given by the impurity
S matrix which is in general nondiagonal, giving rise to
scattering between different quasiparticle species. We
characterize this through its off diagonal components,
RijðλÞ, which are the bare reflection coefficients for a
particle i to scatter to a particle j. Evidently this basis does
not diagonalize the Hamiltonian but is useful when con-
sidering transport properties and has been utilized in earlier
studies of nonequilibrium QIMs [78–84]. In (ii) the bulk
quasiparticle basis is rotated so as to diagonalize the
impurity S matrix and therefore also the Hamiltonian.
Their interaction with the impurity is characterized by
the impurity phase shifts φjðλÞ which the quasiparticles
acquire when passing through the impurity [85]. This basis
is the natural one for describing equilibrium properties of
the system. The two bases are straightforwardly related as
are their scattering data, in particular we shall emphasize
this by writing the reflection coefficients as Rij½φðλÞ�.

In what follows we ignore the shift of the Bethe equations
arising from the impurity as it does not contribute to leading
order in the system size. The effect of the impurity is
considered solely to cause scattering between quasiparticle
species.
Generalized hydrodynamics with impurities.—GHD pro-

vides the long wavelength description of integrable models
in an inhomogeneous far from equilibrium setting. It is
obtained by considering the transport of the conserved
charges through the system via their continuity equations
which are then cast in terms of the quasiparticle distribu-
tions. The result is a set of coupled Euler equations for the
quasiparticle rapidity distributions which become functions
of space and time; ρjðλ; x; tÞ. They can be viewed semi-
classically as describing the ballistic propagation of qua-
siparticles through the system. A crucial step in this
procedure is to express the conserved currents in terms
of ρjðλ; x; tÞ, which was at first conjectured on general
grounds and later proven microscopically [88]. In the spirit
of [34,35,56] we incorporate the presence of an integrable
impurity at the origin through the inclusion of a collision
integral term in the GHD equations,

∂tρjðλ; x; tÞ þ ∂x½vjðλ; x; tÞρjðλ; x; tÞ� ¼ δðxÞI jðλ; tÞ: ð1Þ

Here the left-hand side is the standard GHD equation with
vjðλ; x; tÞ ¼ ½ϵ0jðλÞ�dr=½p0

jðλÞ�dr being the dressed quasipar-
ticle velocity. The right-hand side is new and is given by
I j ¼

P
k≠j I jk with

I jk ¼ jRkjð½φ�DrÞj2ρk½1−ϑj�− jRjkð½φ�DrÞj2ρj½1−ϑk�: ð2Þ

The first term here represents the scattering of species k into
j while the second is for the reverse process. The factors
1 − ϑiðλÞ appear as we have assumed that the quasiparticles
obey Pauli exclusion, however, other statistics can also
be incorporated through appropriate replacements [89].
The terms jRjkð½φ�DrÞj2 are the reflection amplitudes of the
dressed quasiparticles and when combined with the other
factors present give the total rate of scattering into and out
of the species j due to the species k. As a consequence of
the integrability of the impurity this preserves the total
number of quasiparticles in the system but breaks some of
the conservation laws, specifically those for which j and k
have different charges. It is important to note that while the
GHD equations are for those in the scattering basis it is the
phase shift from the diagonal basis that undergoes dressing
rather than the reflection coefficients themselves. This is
done locally at the impurity site, i.e., using the occupation
functions at x ¼ 0. Equations (1) and (2) constitute the
main result of our Letter. Through them one can study the
nonequilibrium dynamics resulting from inhomogeneous
quenches such as the bipartioning protocol (see below) in
the presence of integrable interacting impurities. They
represent a very natural extension of the formalism, indeed
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such a protocol was the setting for the first appearance of
the GHD equations, albeit only a purely reflecting defect
was considered [90]. It should be noted, however, that the
scattering between quasiparticle species caused by the
impurity leads to many nontrivial effects which are absent
when the defect is purely reflecting (or equivalently purely
transmitting). These include the generation of a strong
coupling scale, a feature of interacting QIMs, entropy
production and nontrivial charge, and current fluctuations.
Checks.—We can perform some simple analytic checks

of our result. First we consider a noninteracting model of
one species type, with energy ϵðλÞ and momentum pðλÞ
such that sgn½ϵ0ðλÞ=p0ðλÞ� ¼ sgn½λ�, coupled to a noninter-
acting impurity at the origin. The impurity allows for both
transmission and reflection, i.e., a flip of the sign of the
momentum of an incident particle pðλÞ → −pðλÞ with
reflection coefficient RðλÞ. We take the system to be
initially decoupled from the impurity and prepared in its
ground state with different Fermi levels, ΛL;R to the left and
right of the origin. The impurity is then suddenly turned
on and the system allowed to evolve. This situation has
been studied several times in both lattice and continuum
systems [91–95] (see also [96,97] for a moving defect). To
reproduce those results we treat the quasiparticles with λ >
0 and λ < 0 as different species with the impurity causing
scattering between the two. As interactions are absent,
Tjk ¼ 0, no dressing occurs and one can straightforwardly
solve (1) finding that the total current through the impurity
is JðtÞ¼ RΛR

ΛL
dλjp0ðλÞj½1− jRðλÞj2�=2π, the usual Landauer-

Buttiker result previously obtained.
As a more nontrivial check let us consider an interacting

QIM with two quasiparticle species and an impurity which
mixes the two. For the bare impurity S matrix we take the
generic form

SðλÞ ¼ eiαðλÞ
�

cos χðλÞ i sin χðλÞ
i sin χðλÞ cos χðλÞ

�
ð3Þ

such that the diagonal basis consists of symmetric and
antisymmetric combination of the quasiparticles with phase
shifts αðλÞ � χðλÞ. Suppose now we take the ground state
of the system at finite density so that rapidities λ > Λ
are unoccupied. To this we add a single scattering quasi-
particle at λ ¼ λp > Λ. According to (2) this particle is then
scattered by the impurity from one species to the other
at a rate I ¼ j sin½χDrðλpÞ�j2. This is the inverse lifetime
of the quasiparticle and as λp → Λ can be related to the
zero temperature resistivity of the system which has been
calculated in QIMs such as the Kondo model. Specializing
to that case we find agreement with the known exact result
calculated using the T-matrix formalism [85,98].
Entropy production.—In the absence of the impurity, the

GHD equations preserve entropy; however, diffusive cor-
rections to this have been calculated which allow for the
transfer of entropy between scales of the system [99,100].

The collision integral I j plays a similar role here and
results in the production of entropy even from a zero
temperature state. To see this we note that we can derive a
GHD equation also for the occupation functions albeit with
a modified impurity term,

∂tϑjðλ; x; tÞ þ vjðλ; x; tÞ∂xϑjðλ; x; tÞ ¼ δðxÞIϑ
j ðλ; x; tÞ ð4Þ

where ½Iϑ
j ðλ; tÞ�drρtjðλ; 0; tÞ ¼ I jðλ; tÞ. Likewise an Euler-

type equation can be derived for ρhj also. Combining these
along with the definition of the Yang-Yang entropy [101]
we find that the total entropy production rate in the
system is [85]

∂tSðtÞ ¼
X
j

Z
dλsjðλ; 0; tÞI jðλ; tÞ ð5Þ

where sjðλ;x; tÞ¼ log ½ρhj ðλ;x; tÞ=ρjðλ;x; tÞ�þ
P

k

R
dμTjk×

ðλ−μÞ log½1−ϑkðμ;x; tÞ�. The establishment of a nonequi-
librium steady state therefore leads to a linear in time
increase in the total entropy of the system.
Kane-Fisher model.—We now look to implement this

framework in a specific QIM, the Kane-Fisher model
describing a backscattering impurity in a Luttinger liquid.
The Hamiltonian is given by

H ¼
Z

dxψ†ðxÞ½−iσz∂x�ψðxÞ þUδðxÞψ†ðxÞσxψðxÞ

þ g
2

�½ψ†ðxÞψðxÞ�2 − ½ψ†ðxÞσzψðxÞ�2�: ð6Þ

Here ψ ¼ ðψ r;ψ lÞT are two component Weyl fermions
with linear dispersion and positive (r) or negative (l)
momentum. They interact with each other via a four-
fermion interaction of strength g and with an impurity
allowing both transmission and reflection at the origin of
strength U. In the absence of the impurity, the model has
two Uð1Þ charges, the total charge N ¼ R

dxψ†ψ , and
chiral charge J ¼ R

dxψ†σzψ ; however, when U ≠ 0 the
latter is no longer conserved and a current is generated by
the impurity. The impurity is RG relevant for g > 0 and
leads to a dynamically generated scale, TU, and vanishing
conductance at zero temperature in equilibrium [102].
The model is integrable and can be solved either through
bosonization and mapping onto the boundary sine-Gordon
model [16,78] or directly in fermionic form using the
coordinate Bethe ansatz [17].
We study a bipartioning quench, where the system is

prepared in the ground state of the U ¼ 0 system at
different chemical potentials to the left and right of the
origin and then allowed to evolved according to H at non-
zero U. This models the sudden coupling of two disjoint
quantum wires through a quantum point contact. In this
context the system contains two quasiparticle species
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labeled �. Their energy and momenta are ϵ�ðλÞ ¼
�pðλÞ ¼ eλ while T��ðλÞ ¼ T�∓ðλÞ≡ TðλÞ,

TðλÞ ¼
Z

dω
2π

e−iωλ
sinh

�
π
2
ðγ − 1Þω�

2 sinh
�
π
2
γω

�
cosh

�
π
2
ω
� ; ð7Þ

where γ−1 ≈ 1þ 2g=π, which we take to be an integer. The
quasiparticles scatter from the impurity with an S matrix of
the form (3) with χðλÞ ¼ π=2 − arctan eðλ−λUÞ=γ where we
have introduced λU ≈ ð1þ 1=γÞ logU which sets the impu-
rity scale, TU ∼ eλU , and αðλÞ given in the Supplemental
Material [85].
Initially the system is taken to be populated only to

the left of the impurity according to ϑ�ðλ; x; 0Þ ¼
Θð−xÞΘðΛ − λÞ with ΘðxÞ the Heaviside function and
EF ¼ eΛ being the Fermi level for the quasiparticles.
The corresponding rapidity distribution, ρ0ðλÞ, can then
be determined analytically through the Wiener-Hopf
method [85]. From this initial condition the solution to (1)
is given by

ρ−ðλ; x; tÞ ¼ Θð−xÞ½Θð−x − tÞ þ Θðtþ xÞRðλÞ�ρ0ðλÞ
ρþðλ; x; tÞ ¼ ½Θð−xÞ þ ΘðxÞΘðt − xÞT ðλÞ�ρ0ðλÞ ð8Þ

where we introduced RðλÞ ¼ jRð½χðλÞ�DrÞj2 dressed reflec-
tion amplitude and T ðλÞ ¼ 1 −RðλÞ the dressed transmis-
sion amplitude. A similar form holds also for the occupation
functions with the replacement ρ0ðλÞ → ΘðΛ − λÞ and
RðλÞ → RϑðλÞ such that ½RϑðλÞ�dr ¼ RðλÞΘðΛ − λÞ and
T ϑðλÞ ¼ 1 −RϑðλÞ. The dressed phase shift χDr can be
determined analytically providing a full analytic solution to
the problem [85]. From this one finds that for Λ ≪ λU the
dressing has negligible effect, in essence the natural scale of
the system as set by the impurity, TU is much larger than the
one set by the quench, EF and system the remains close to
equilibrium. In the opposite limit, however, the dressed
phase shift can be approximated by

χDrðλÞ≃ π

2
þ
Z

∞

−∞

dω
2iω

tanh
�
π
2
γω

�
cosh

�
π
2
ω
�

sinh
�
π
2
ð1þ γÞω� e−iωðλ−λUÞ: ð9Þ

An important feature here is that for λU ≪ λ the phase shift
is constant χDrðλÞ ≃ ðπ=2Þ½ð1 − γÞ=ð1þ γÞ�.
The current and charge density are straightforwardly

obtained from (8). The former is nonzero only within the
light cone surrounding the impurity and takes a Landauer-
Buttiker form,

Jðx; tÞ ¼ Θðt − jxjÞ
Z

dλT ðλÞρ0ðλÞ: ð10Þ

Using our asymptotic result for the phase shift we see that
in the far from equilibrium regime Jðx; tÞ ≃ cos2ðπ=2Þ½ð1 −
γÞ=ð1þ γÞ�J0ðx; tÞ where J0ðx; tÞ is the current at U ¼ 0.

In Fig. 1 we plot the current for different values γ as a
function of TU=EF normalized by J0. The density also only
deviates from its initial value within the light cone. Within
this region we have

Nðx; tÞ ¼ Θð�xÞ
Z

dλ½1 ∓ RðλÞ�ρ0ðλÞ: ð11Þ

The density therefore exhibits a finite jump across the
impurity, i.e., a potential difference of 2

R
dλRðλÞρ0ðλÞ.

In addition, using the Friedel sum rule and αDrðλÞ we
may compute the impurity induced charge deficit at
x ¼ 0 obtaining to leading order in EF=TU, δNimp ¼
−½2=ð1þ γÞ� [85]. Thus despite being a theory of macro-
scopic length scales, we can use GHD to infer microscopic
properties.
We may go beyond the expectation values of the current

and density and calculate their fluctuations as well. For
this we introduce the time integrated current J ðtÞ ¼R
t
0 dτJð0þ; τÞ as well as its generating function

Gðt; βÞ ¼ Tr½ϱ eβJ ðtÞ� ð12Þ

where ϱ is the density matrix of the system. Then upon
using the continuity equation ∂tNðx; tÞ þ ∂xJðx; tÞ ¼ 0 this
will give the fluctuations of the charge across the impurity.
This quantity obeys a large deviation principle and has been
studied recently in the context of both integrable and
nonintegrable models [103–109]. Using recent results for
the full counting statistics of integrable models [107–109]
we find

FIG. 1. The current within the light cone about x ¼ 0, rescaled
by its value without the impurity Jðx; tÞ=J0ðx; tÞ (10) as a
function of logTU=EF. The different curves correspond to
interaction strength γ ¼ 1; 1

2
; 1
3
. The asymptotic values for large

EF are given by cos2ðπ=2Þ½ð1 − γÞ=ð1þ γÞ� as explained in
the text.
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logGðt;βÞ ¼ t
Z

dλ
2π

eλ log
�
RϑðλÞþT ϑðλÞeyðλ;βÞ�

yðλ;βÞ ¼ β−
Z

dμTðλ−μÞ log�RϑðμÞþT ϑðμÞeyðμ;βÞ�:
ð13Þ

The function yðλ; βÞ is related to the effective charge carried
by the quasiparticles, indeed differentiating the second line
above we have that ∂βyðλ; βÞ ¼ qdr the dressed quasipar-
ticle charge. These results can be contrasted with those
obtained for the related boundary sine-Gordon model
[78–80]. In these works the impurity scattering is also
treated using a Boltzmann equation, however, the dressing
of the scattering amplitudes does not appear. This differ-
ence is a result of the physical setup of the problem. Therein
the current was studied directly in the nonequilibrium
steady state which emerges from an adiabatic turning on
of the impurity and the potential difference [110,111]. In
that circumstance one can envisage starting in a dilute limit
where bare quasiparticles scatter one by one off the
impurity, without any dressing, and then slowly increasing
the density. In the quench problem considered here this
dilute limit cannot be used and we must instead turn to
GHDwhich is a theory of dressed quasiparticles as opposed
to bare ones. Nevertheless when Λ ≪ λU one obtains the
expressions for the current of [78–80].
Lastly we examine the entanglement entropy between the

two halves of the system, using SR ¼ −TrϱRðtÞ log ϱRðtÞ
where ϱR is the reduced density matrix of the right half of the
system which has been studied previously in noninteracting
systems [93,94,112,113]. We do so here by using the
quasiparticle picture [114–117] which essentially counts
the number of pairs of quasiparticles which are entangled
and are shared between the left and right halves of the
system. Since pairs are shared within the light cone this will
be linear in time and by equating the entanglement entropy
with the thermodynamic entropy we obtain

SR ¼ −t
Z

dλ
2π

eλ
�
RϑðλÞ logRϑðλÞ þ T ϑðλÞ log T ϑðλÞ�:

ð14Þ

This reduces to the known expression in the noninteracting
limit [112] and vanishes when the impurity either purely
transmits or reflects.
Discussion and conclusions.—In this Letter we have

expanded the framework of GHD to include interacting
quantum impurity models through the addition of an
impurity collision integral which can be determined exactly
from integrability. After performing some nontrivial ana-
lytic checks on this expression, we presented an exact
solution of the impurity GHD equations for a bipartite
quench with an interacting impurity. Using this we then
derived several results on the current, entanglement entropy

and full counting statistics of the model. In addition we also
showed how the approach can be used to determine
microscopic properties of the impurity like the charge
deficit.
While ostensibly a theory of integrable dynamics, GHD

facilitates the inclusion of certain mild integrability break-
ing terms such as external potentials [118], inhomogenous
interactions [58], atom losses [119], or extended non-
integrable defects [120], through the use of collision
integrals [121]. These naturally limit the applicability of
the theory to be shorter than the quasiparticle lifetime,
which however may still be quite large. A similar approach
can be adopted here through the inclusion of near-inte-
grable impurities with approximate reflection coefficients
determined via Fermi’s golden rule and compared to
numerics [122,123]. Alternatively we can consider includ-
ing multiple widely separated impurities and determine
transport through a system with finite but small impurity
concentration.
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