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180mTa is a rare nuclear isomer whose decay has never been observed. Its remarkably long lifetime
surpasses the half-lives of all other known β and electron capture decays due to the large K-spin differences
and small energy differences between the isomeric and lower-energy states. Detecting its decay presents a
significant experimental challenge but could shed light on neutrino-induced nucleosynthesis mechanisms,
the nature of dark matter, and K-spin violation. For this study, we repurposed the Majorana Demonstrator,
an experimental search for the neutrinoless double-beta decay of 76Ge using an array of high-purity
germanium detectors, to search for the decay of 180mTa. More than 17 kg, the largest amount of tantalum
metal ever used for such a search, was installed within the ultralow-background detector array. In this
Letter, we present results from the first year of Ta data taking and provide an updated limit for the 180mTa
half-life on the different decay channels. With new limits up to 1.5 × 1019 yr, we improved existing limits
by 1–2 orders of magnitude which are the most sensitive searches for a single β and electron capture decay
ever achieved. Over all channels, the decay can be excluded for T1=2 < 0.29 × 1018 yr.
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The 180mTa isomer is unique in two interesting ways: It is
the only naturally occurring long-lived isomer, and it is the
only known isomer that has not been observed to decay,
while its ground state has a half-life of only 8.15 h [1]. This
remarkable property can be attributed to a combination of
two factors: the large difference in the K spin, which stands
for the projection of the spin on the symmetry axis, and the
small energy differences requiring an E7 or M8 transition
between the isomeric and lower-lying states [2–4]. The
combination of both results in the isomer being trapped in a
metastable excited state. Over the past century, numerous
attempts were made to measure the decay of 180mTa [5–11].
As shown in Fig. 1, 180mTa has several possible decay

modes. These include deexcitation to a lower-lying state by
γ-ray emission or internal conversion (IC), electron-capture
(EC) decay to 180Hf, to 180W by β− decay, and α decay to
176Lu. As shown in Table I, the IC mode is expected to be
the fastest decay, and the γ-ray emission is expected to be
the slowest [12,13]. While often neglected, the possibility of
an α decay branch is motivated by a positiveQ value and the
observation of α decays with 1018-yr half-lives in neighbor-
ing W isotopes [14]. We follow the common behavior of α
decays that similar spin and parity in the daughter are
preferred, and, hence, a specific state in 176Lu is favored; see
Fig. 1. The total decay width of the 180mTa isomer can be
expressed as

1=T ¼ Γtotal ¼ ΓEC þ Γβ− þ Γγ þ ΓIC þ Γα þ ΓDM: ð1Þ

Here, ΓEC and Γβ− are the decay widths of the isomeric state
directly to Hf by EC and β− decay to W, respectively. The
decay width Γγ and ΓIC are isomeric transitions to lower-
lying states of 180Ta via γ-ray emission or IC, respectively.
Γα is the α decay width, and ΓDM is the decay due to the
possible isomeric deexcitation by dark matter (DM) [15].
Each decay mode can be identified by characteristic γ rays;
cf. Fig. 1. If no decay is found, the total width has to be
bigger than the smallest half-life limit.
Theoretical techniques [13,20] have been proposed for

estimating the lifetime of deformed nuclei like 180mTa. A
measurement of the 180mTa decay rate would test the
accuracy of these models, particularly the K-selection rule
based on the symmetry of the deformation [13], under the
most extreme conditions. In addition, long-lived isomers
can be used to constrain DM models by considering
the contributions of DM-induced transitions on the decay
rate [15]. Finally, the measurement of the 180mTa lifetime
could help explain the observed abundance of 180Ta and its
role within a nucleosynthesis framework [21–24].
Despite being an isotope of interest for almost a century,

measuring the decay of the metastable isomer is exper-
imentally challenging. The natural isotopic abundance is
very small [23], and obtaining sufficient quantities of the
isotope is difficult. Additionally, the expected energies of
the decay emissions are low, while the density and atomic
number of tantalum metal are high, which makes it
challenging to maintain reasonable detection efficiency
while increasing the sample mass due to self-shielding.
Finally, the decay rate is very slow, making standard
radioassay techniques insufficient for detection. To over-
come these, a larger amount of material then ever before
was installed into the ultralow-background environment of
the Majorana Demonstrator. The purpose of Majorana was
to demonstrate the feasibility of using enriched high-purity
germanium (HPGe) detectors for a ton-scale neutrinoless
double-beta decay search in 76Ge [25,26]. Located deep
underground at the Sanford Underground Laboratory [27],
it consisted of two arrays of HPGe detectors in vacuum
cryostats within a passive copper, lead, and polyethylene
shield as well as an active muon veto. The success of the
Demonstrator was enabled by the careful selection and
development of ultralow-background components [28], the
use of low-noise electronics and data acquisition hardware
[29], and excellent energy resolution achieved through a
combination of detector design and novel analysis tech-
niques [30,31]. These features also made it an ideal platform
for investigating the decay of 180mTa. Following data taking
with the enriched detectors [32] and the removal of the
enriched detectors for use in LEGEND-200 [33], the
Demonstrator was repurposed to make this measurement
in 2022.
To implement tantalum in the existing setup, 99.995%

pure Ta metal disks were purchased from Goodfellow
Corporation [34]. Each disk is 2 mm thick with a mass

FIG. 1. Level diagram of the decay modes of 180mTa (red
arrows) based on data from Ref. [16]. Certain decay modes can
also be observed indirectly when the ground state of 180Ta is
populated that then decays further (pink dashed arrows). The
observation of γ rays at characteristic energies can be used to
identify the different signatures (blue arrows, blue dashed for the
not yet observed 37.7-keV transition). The nomenclature follows
Eq. (1), and all energies are given in keV.
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of approximately 181 g. They were brought underground in
January 2022, where they underwent a multistep cleaning
process. The disks were scrubbed with Micro-90 to remove
oil and manufacturing dirt, then underwent a light chemical
etch using 10% nitric acid, and were finally baked under
high vacuum. A total of 17.39 kg of Ta disks were installed
within the Demonstrator, resulting in a total 180mTa mass
of 2.045 g, assuming a 180mTa natural abundance of
0.0001176(23) [35], which is a combined analysis of several
previous measurements [36–39].
To maximize exposure and detection efficiency while

preserving the low-background performance of the Demon-
strator, previously screened, ultrahigh-radiopurity compo-
nents to hold the samples and interleave them with the 23
remaining natural detectors [40]. A Geant4 [41] simulation
was used to determine the optimal arrangement while
respecting the weight and geometry constraints of the
Demonstrator cryostat. It optimizes the thickness of the Ta
samples against efficiency for detecting the low-energy
γ rays of interest. Figure 2 shows the final configuration.
Ta stacks in neighboring strings are offset vertically so that
each has a line of sight with at least three detectors.
This Letter presents data collected over 347.8 days

between May 2022 and April 2023. Each of the 23
HPGe detectors in the array is read out independently, in
a similar fashion to the Majorana Demonstrator experiment.
Detector waveforms that exceed approximately 5 keV are
digitized with GRETINA digitizers [42,43] and read out
using the ORCA (Object-oriented Real-time Control and
Acquisition) data acquisition software [44]. Time stamps are
synchronized across the data acquisition system, and signals
from multiple detectors that occur within a 4 μs window are
grouped. Events coincident with muons that trigger the
external veto system are tagged for offline removal. Periods
of high noise due to liquid-nitrogen fills are also excluded
from the analysis. Throughout the data-taking period, a
biweekly, 4-h energy calibration was performed with a 228Th
line source [45].

The 180mTa data analysis was done using the secondary
analysis chain of Majorana Demonstrator, a Radware-based
software package [46]. Data from 228Th calibration data
was used to set the energy scale for each subsequent two-
week period. The energy calibration procedure uses many
of the tools developed for the Demonstrator, including
pole-zero and charge-trapping corrections [31]. To estimate
the quality of the energy calibration, the γ rays from natural
backgrounds (which are not used for calibration), including
182Ta, are fit with one or more Gaussian functions plus a
linear background. For the lowest energies, an additional
exponential background component is added to reproduce
the rise of the spectrum toward lower energies. For each
energy, the width of the Gaussian agrees well with the
resolution achieved during the neutrinoless double-beta
decay search [31] and results in a FWHM of 0.4 keV at
100 keV. Three of the 23 detectors showed gain drifts
following a power outage that occurred midway through
data taking, which negatively affected their energy reso-
lution, and these detectors were not used in this analysis.
Following energy calibration, the data are checked for

dropout periods by measuring the event rate. If no events
occur within a detector over a 4-h window, that entire time
period, for all detectors, is excluded from the analysis.
Beside calibrations, one-day shutdowns due to power out-
ages impacted the life time. The array was live for 98.2% of
the data-taking period as a result of these cuts.
A 10-keVanalysis threshold is applied to all datasets, and

the data are blinded by removing events that fall within
�2 keV of signature γ rays. The possible decay modes and
the subsequent γ rays are shown in Fig. 1: EC to 180Hf γ rays
are 93.3, 215.3, and 332.2 keV; β− decay to 180W γ rays are
103.6, 234.0, and 350.9 keV; and internal γ rays are 37.7
and 39.5 keV [16]. For the IC, only the 39.5 keV transition
can be observed. An additional signature of the γ and IC
branches is the observation of a 93.3- or a 103.6-keV γ ray
from the deexcitation of Hf or W, although the branching
ratios to the first excited states of these nuclei is small
(25% for Hf and 4% for W).
The total event rate of a few hertz observed in the

detector array is dominated by signals originating from the
Ta samples; see Fig. 3. There is a constant event rate due to
long-lived natural radioactivity in the disks and apparatus.
From the Demonstrator data, we can estimate that in the
current configuration only about 10% of the observed
constant background comes from the latter; hence, the
sample disks contain around 0.5ð1Þ mBq=kgTa238U and
0.10ð2Þ mBq=kgTa 232Th. The decrease of the background
rate is due to 182Ta and 175Hf, which are the remnants of
cosmogenic activation of the Ta samples above ground,
with half-lives of 114 and 70.3 days, respectively. Previous
studies stored their Ta samples underground for several
years before beginning measurements to eliminate these
backgrounds [47].

FIG. 2. Left: the detector module during assembly. Right:
technical drawing of two of the seven installed strings detector
arrangement with three and four HPGe detectors (teal) and the
tantalum sample disks (gray).
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A crucial component of the half-life calculation is the
efficiency for detecting the signature γ rays emitted during
the 180mTa decay under exclusion of possible summing of
signals in the cascades. To determine this, a combination of
experimental data and Monte Carlo simulation is used.
First, a Geant4 simulation was performed in which individual
γ rays were emitted from uniformly distributed points
within the Ta disks. The starting energy of the γ rays
was varied from 10 keV to 3 MeV in increments of 10 keV,
and the efficiency of detecting these γ rays in one of the
detectors was calculated at each energy. The resulting
interpolated efficiency curve is shown in Fig. 4. The
simulation assumes the cosmogenic activity is uniform
between all of the Ta disks, which is consistent with the
observed count rates in each detector.

The shape of the simulated efficiency curve is validated
by a comparison with the observed intensities of the γ rays
from 182Ta decay, after correcting the signal intensities for
the known branching ratios (e.g., [48]). The absolute
efficiency, or a possible scaling of the predicted curve, is
determined using the coincidence method [49,50]. In this
method, one compares the individual intensity of γ rays in
a cascade with the rate of multidetector events to obtain
the absolute efficiency of an individual detector. The 208Tl
decay at the end of the natural 232Th chain provides
cascades that can be used for this analysis. Because of the
low rate of 208Tl decays in the Ta disks, this method suffers
from low statistics, especially for high multiplicity events,
and the uncertainty on the derived efficiencies is large.
The Geant4-derived efficiency is normalized to these points
using a least-squares fit that results in a scaling of 0.95(6),
and the efficiency values from this scaled curve are used in
the following analysis.
The 180mTa half-life can be calculated from the following

formula:

T1=2 ¼ ln 2
ϵkb
Sk

NTaT live; ð2Þ

where Sk represents the counts in the kth decay channel, ϵk
is the detection efficiency at the energy E for a specific
decay mode (shown by the curve in Fig. 4), b is a factor for
taking into account the branching ratio as well as the
internal conversion probability, and NTa is the number of
180mTa atoms, 6.84ð17Þ × 1021. The live time of the data-
taking period, T live, is 341.5 days.
A likelihood fit is used to extract the 180mTa decay signal

strengths from the data. Spectral fits were performed in the
region of interest (ROI) surrounding each of the character-
istic γ-ray energies. The fits include a Gaussian peak
shape for the signal, a linear background, and additional
Gaussians at the energies of any known background lines
in the region of interest; see, e.g., Fig. 5. The literature
values for the energy of the γ rays and the expected energy
resolution are used as initial values in the fit. The energy is
allowed to float within �0.5 keV, and the resolution is
allowed to float within �10% from the expected value.
The background rate in each detector is fit to be about
0.7 and 0.5 cts=ðkeV dayÞ averaged over the data-taking
period in the 100- and 300-keV region, respectively. This
rate is comparable with previous experiments [10]. The fit
of the 93.3-keV and the 350.9-keV 180mTa signals are
impacted by nearby background. The excellent energy
resolution of the Demonstrator allows a simultaneous fit of
multiple contributions from signal and backgrounds at
known energies. Hence, all regions can be used, but some
will have larger uncertainties. Within all of the signal ROI,
the best-fit signal strength is within 2σ of a null result. To
calculate Sk, the best-fit peak area plus 1.65σ (90% C.L.) is
used to calculate a limit on the decay rate.

FIG. 3. Count rate in real time for the region between 100 and
500 keV, where the 180mTa signatures are expected. The count
rate, not lifetime corrected, is due primarily to radioactivity in the
Ta samples: 182Ta decay, the decay of other short-lived cosmo-
genic isotopes, and a constant rate from the U=Th decay chains.

FIG. 4. Simulated detection efficiency averaged per detector
(blue dashed line) compared to the intensities of γ rays from 182Ta
decays with branching ratio greater than 1% (orange points).
Since the absolute 182Ta activity is not known, the points are
multiplied with an arbitrary constant C to compare the distribu-
tion to the curve shape. The green points show efficiencies
determined by the 208Tl coincidence method. The simulation is
normalized to these points [scaling factor 0.95(6)], whereas the
band represents the uncertainty due to scaling.
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In contrast to previous studies, the large number of
detectors in close geometry combined with low-background
rate means a multiplicity analysis can be done that looks for
the coincident γ rays expected from some of the 180mTa
decay channels. This analysis is competitive with fitting
the single-detector spectra, because the reduction in

signal detection efficiency (0.001–0.01) is counterbalanced
by the improved background suppression (∼10−3 cts=
ðkeV keV dayÞ so that the ϵk=Sk factor is similar to, or
higher than, the simple spectral search. A two-dimensional
histogram is made for events that contain two coincident
energy deposits within the considered signal regions, and a
two-dimensional likelihood fit is done assuming the same
mean energy and peak resolution as in the one-dimensional
fit. The efficiency ϵ from Eq. (2) now consists of the
simulated detection efficiency for a two-detector event with
the corresponding energies from within the cascade;
cf. Fig. 1. In this simulation, two γ rays are started with
an angular correlation factor based on multipole momentum
and spin of the emitting states [51]. The results from the
spectral and two-dimensional fits are shown in Table I.
These results improve upon the best existing limits for each
decay channel and combine for a total half-life limit of
T1=2 > 0.29 × 1018 yr. In previous measurements [9,10,52],
the total half-life is calculated without considering the
isomeric transitions. Reference [52] does search for the
isomeric transitions but does not include them in the total
half-life calculation. The most recent work [11] includes
them; hence, the Majorana Demonstrator result represents an
improvement of 2 orders of magnitude. For the direct decays
of the isomeric state, the improvement in efficiency and
reduction in background rate due to the coincidence method
results in an improvement of about one order of magnitude.
These improvements are of great interest to the predictions
on the basis of the K-selection rules [13].
The nonobservation of the transition to the ground state

decays (Γγ and ΓIC) constrains the phase space of certain
classes of DM models that evade traditional underground
detection methods [15,47]; cf. Fig. 6. Strongly interacting

FIG. 5. Summed spectra for all detectors for two selected ROI
for the 37.7-keV (top) and the 332.3-keV (bottom) γ rays,
respectively. The yellow line shows the best fit of the background
peaks and flat background. The red curve shows the best fit of the
signal peak.

TABLE I. Measured decay half-life limits. Results are given at a 90% C.L. using the one-dimensional spectral fits (SF), a multiplicity-
two analysis (2D) where applicable, and the strongest limit for the decay channel. The nomenclature introduced in Eq. (1) is used to
describe each decay channel. For the 39.5-keV transition ( �), the internal conversion factor is calculated using Ref. [17].

EC β− γ IC α

Method
Energy
(keV)

T1=2

(1018 yr)
Energy
(keV)

T1=2

(1018 yr)
Energy
(keV)

T1=2

(1018 yr)
Energy
(keV)

T1=2

(1018 yr)
Energy
(keV)

T1=2

(1018 yr)

SF 93.3 1.23(30) 103.6 1.54(17) 37.7 0.63(8) � � � � � � 184.1 4.80(42)
215.3 5.69(55) 234.0 5.76(75) 39.5 0.06ð1Þ� 39.5 0.06ð1Þ� 204.7 5.58(54)
332.2 10.0(13) 350.9 9.31(114) 93.3 0.29(4) 93.3 0.29(4) 388.8 10.2(12)

103.6 0.07(2) 103.6 0.07(2)

2D 93.3þ 215.3 1.88(35) 103.6þ 234.0 2.65(49) � � � � � � � � � � � � 184.1þ 204.7 11.3(22)
93.3þ 332.2 3.18(56) 103.6þ 350.9 4.18(78) � � � � � � � � � � � �
215.3þ 332.2 13.3(22) 234.0þ 350.9 15.4(27) � � � � � � � � � � � �

Best: this work 13.3(22) 15.4(27) 0.63(8) 0.29(4) 11.3(22)
Previous works 1.6 [11] 1.1 [11] 0.0045 [11] 0.0045 [11] � � �
Expected T1=2

[12,13,18,19]
1020 yr 1023 yr 1031 yr 1018−19 yr 1028 yr

PHYSICAL REVIEW LETTERS 131, 152501 (2023)

152501-5



DM, which thermalizes as it passes through Earth, render-
ing it undetectable via nuclear scattering, would mediate
exothermic transitions from the 180mTa state and measur-
ably increase the decay rate of the isomer. Similarly, in
inelastic DM models, ground state DM interacts only
inelastically with standard model particles and upscatters
to an excited state by downscattering 180mTa, increasing the
measured 180mTa decay rate.
In summary, we set improved limits on the decay of

180mTa while deriving stronger constraints on strongly
interacting and inelastic dark matter. Data taking with the
Demonstrator array will continue into 2024, and, as
the background rate decreases further to about a quarter
of the current average due to the decay of cosmogenics
within the Ta samples, sensitivity will continue to improve.
Besides dedicated ββ searches and some α decays, the
results presented are the most sensitive search for radio-
active decays ever achieved.
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