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The process ete™ — DiT D}~ is studied with a semi-inclusive method using data samples at center-of-
mass energies from threshold to 4.95 GeV collected with the BESIII detector operating at the Beijing
Electron Positron Collider. The Born cross sections of the process are measured for the first time with high
precision in this energy region. Two resonance structures are observed in the energy-dependent cross
sections around 4.2 and 4.4 GeV. By fitting the cross sections with a coherent sum of three Breit-Wigner
amplitudes and one phase-space amplitude, the two significant structures are assigned masses of (4186.8 +
8.7 +30) and (4414.6 £3.4 +6.1) MeV/c?, widths of (55 4+ 15 £ 53) and (122.54+7.5 + 8.1) MeV,
where the first errors are statistical and the second ones are systematic. The inclusion of a third Breit-
Wigner amplitude is necessary to describe a structure around 4.79 GeV.

DOI: 10.1103/PhysRevLett.131.151903

In e'Te™ annihilations, several conventional vector char-
monium states are established in the inclusive hadronic
cross sections above the open charm threshold, such as the
w(3770), w(4040), w(4160), and w(4415). However,
unexpected vector charmoniumlike resonance structures
have also been discovered over the past two decades with a
charmonium and light hadrons in the final state. These
include w(4230), initially observed in the ete™ —
atx~J/y process [1,2], and y(4360) and y(4660), ini-
tially observed in ete™ — 777w (3686) [3,4] by the B-
factory experiments BABAR and Belle.

These vector charmonium(-like) states have been
searched for or further investigated experimentally in many
decay modes, involving charmonium states (such as
xta~J/y [51, KKJ/y (6,71, nJ/y [8.9], n'J/w [10],
arh, [11-13], ztz~yw(3686) [14], and wy.; [15]), and
charmed mesons (such as DD [16,17], DOD* 7t +c.c.
[18] and DD*x + c.c. [19]), whereas experimental results
of the decay modes involving charmed strange mesons are
inadequate. Interestingly, the mass of the y(4230) state lies
just at the production threshold of the D}t D%~ pair.

The measurements of the exclusive cross sections for
charmed strange meson pairs were performed by CLEO-c
at center-of-mass energies (E, ,, ) up to 4.26 GeV [20], and
by BABAR [21] and Belle [22] with the initial-state
radiation (ISR) method. Since these results are limited
by either energy range (CLEO-c) or statistics (BABAR and
Belle), it could not be concluded yet whether these vector

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

charmonium(-like) states decay into charmed strange
meson pairs or not.

With the data samples taken by the BESIII experi-
ment, the cross sections of ete™ — DiTDi~ can be
measured from the production threshold up to 4.95 GeV,
with much improved precision over previous experiments.
This unique measurement allows to investigate the vector
chamonium(-like) structures, therefore shedding light on
their nature.

The BESIII detector is described in detail in [23,24]. The
experimental data used in this analysis were taken at E,
ranging from 4.226 GeV (just above the D*" D*~ produc-
tion threshold) to 4.95 GeV with 76 energy points [25-27]
corresponding in total to an integrated luminosity of
15.67 tb=! [27-29]. A Geantd-based [30] Monte Carlo
(MC) package, which includes the geometric description
of the BESIII detector and its response, is used to produce
simulated samples which are used to estimate the back-
grounds and to determine the detection efficiencies and ISR
corrections.

The ete™ — D¥"D*~ events are generated using
helicity-amplitude (HELAMP) models in EvtGen [31,32]
at all the energy points, where the HELAMP inputs
(relative magnitudes of the helicity amplitudes) are
extracted from the helicity angular distributions of data,
the width of D** is set to zero, and beam energy spread and
ISR are considered with the generator KkMC [33,34].
Possible background contributions are estimated with
inclusive MC samples generated by KKMC with integrated
luminosities comparable to data, in which the known decay
modes are modeled with EvtGen using branching fractions
taken from the Particle Data Group [35], and the remaining
unknown charmonium decays are modeled with
LUNDCHARM [36]. Final-state radiation (FSR) from charged
particles is incorporated by the PHOTOS package [37].

151903-4
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To increase efficiency, a semi-inclusive method is
performed by reconstructing only DT or Di™ of
ete™ = DD, with Di* - yDf - yKtK- 7. With
this method at least one good photon, one pair of KTK~,
and one 7+ are required in the final state. The selection
criteria for charged tracks and photon candidates are
described in Ref. [38]. To select D{ candidates, the
invariant mass mgg, of K*K~n* is required to be in
the range |mgg, —mp | < 15 MeV/c?, where mp, is the
nominal Df mass [35]. All the yDf (i.e. yK*K~n%)
combinations are taken as DT candidates for further
selection. As the missing mass m,,;, and the invariant
mass m, gk, of D:* — yKTK~n* candidates are anticor-
related, a modified missing mass M s = Muiss + Mykkr —
mp: is used to improve the resolution, where mp. is the
nominal mass of D* [35]. With the signal MC events, the
resolution of M ;. is estimated and parametrized as an
energy dependent function 6)i° (E.p, ). To select D}*
from ete™ — DiTDi~ events and suppress background,
the modified missing mass of D** candidates is required to
be in a window [M s — mp;| < 56);C (E ). Because of
the positive correlation between m, g, and mgg,, a
modified mass M, kg, = m kg, — Mgk, +mp_ is used
for D;* candidates to improve the resolution.

The yield of D}* signals is determined by fitting the
M, g, distributions. To describe the D signal shape in
data, the Mk, shape of correct yK Kz combinations from
eTe” = DiTDi MC, which is figured out by matching
the MC truth, is used. This MC signal shape is convolved
with a Gaussian function to take into account the possible
mass shift Am, and the resolution (and D} width) difference
Ao between data and MC simulation. The M, gk, shape of
random yK Kz combinations from ete™ — DiTDi~ MC is
also used as one component and its ratio relative to the one
for correct combinations is fixed according to the MC
study. To describe the background in M, kg, distribution for

data, a second order Chebyshev function 1+ cox +
¢1(2x? = 1) with two coefficients ¢, and ¢, is used. The
parameters Am, Ao, ¢, and ¢, are floating initially in the
fits. Since no E ,, dependence is observed for Am, Ao, and
¢y, they are finally fixed to the values averaged over E, ,, in
the fits to determine the nominal D* signal yields, leaving
only ¢ as floating. As an example, the fit of M, g, to data
at E., =4.29 GeV [39] is shown in Fig. 1.

A study of the inclusive MC samples shows that no
peaking background is found from events without D** after
applying all the selection criteria. The ISR-produced
DED;T events can contribute as a peaking background,
which is subtracted by normalized MC according to the
cross sections of e*e™ — DED;T [40] and the luminos-
ities. The other two-body processes containing D** are
eTe — D?iD(?;):F,

S

but they fail the missing mass

100 T T T T T T T T T T T T T
o I ]
> goof tdata 3
(B [ -- signal ]
g 600 -+ random comb .
< I ----bakground b
S 00 .
I [ #es ]
z ]
= 200f S e .
g e ::T:"""‘”:/5"‘\'.""“‘\"““"“--------.... i
|84 T T TP L A TP A U BT SIS T AT 1T

202 204 206 208 2.1 212 214 216 2.18 22
2
m, g -Myg +Mp, (GeV/ce?)

FIG. 1. The M, kg, distribution for data at 4.29 GeV. The black
curve represents the fit, the red dashed curve the background, the
blue dot-dashed curve the random combinations of yKKz from
ete” — D§iD§‘¢, and the blue dashed curve the correct yKKn
combinations from the signal.

requirement. For the same reason, the three-body process
ete” — D:D®K does not contribute as peaking back-
grounds either. The contribution from the three-body
process ete™ — DDz is expected to be negligible
due to isospin violation and the missing mass requirement.
The Born cross section op,, and the dressed cross
section og..sseq At €ach energy point are calculated using

OBorn — O-dressed|1 - H|2

fit
Np. = Np:p:=

- .
2B(Df - K*K~n%)e(1 + 5)ﬁ£im m

where N%‘t is the fitted Dy signal yield, Np:p= is the
number of the estimated peaking background events from
the ISR produced DED;T, L, is the integrated luminosity,
1+ 6 is the ISR correction factor, (1/|1 —TI|?) is the
correction factor from the vacuum polarization (VP) [41],
B(Df — K*K~z%) is the branching fraction of the decay
D¥ — KTK~ ", which is taken from Ref. [35], and € is the
detection efficiency times the branching fraction of D+ —
yD¥ [35]. As DiT and D}~ are not separated in the fitted
signal yields, there is a factor of 2 in the denominator.

The ISR effect also impacts on the detection efficiency in
addition to the correction factor. Since ISR depends on the
dressed cross section line shape, an iterative procedure is
used to determine the dressed cross sections [42]. First,
signal MC samples are generated at all the energy points
with a flat dressed cross section line shape using KKMC to
determine the initial detection efficiencies, ISR correction
factors and subsequently the preliminary measured dressed
cross sections. The measured dressed cross sections are
fitted with a coherent sum of three Breit-Wigner (BW) and
one two-body phase-space (PHSP) amplitudes assuming
DITD!~ in P wave [43]
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FIG. 2. Three fitting results for the measured dressed cross sections of eTe™ — D™D}~ The black dots with error bars are for the
measured dressed cross sections. In each plot, the black curve represents the fit; the green dashed, blue two-dashed, and red long-dashed
ones are for the three BW amplitudes from the fit, respectively, and the pink dot-dashed is for the PHSP contributions.

Odressed :’BWI (Ec m

where

BWl (Ec.m‘) =

is the first BW amplitude [44],

BWj(Ec.m.) =

is the jth BW amplitude (j = 2, 3), the Blatt-Weisskopf
function By (E. ) = \/1/[1 + ¢*(Ecm.)R?] is used as the
P-wave barrier factor [45,46] with ¢(E. ,, ) the momentum
of D¥* and R = 1.6 GeV~! [47] the barrier radius, a, is the
coefficient for the BW, [['+.-B(D;Dy)]; is the product of
the eTe™ partial width and the branching fraction of
DT D% for the jth resonance, f(E.,, ) is the velocity of
D, ay is the coefficient for the PHSP amplitude, n is a
free exponent, ¢; and ¢ are the relative phases. With the
fitted line shape, a MC-weighting method [42] is used to
iteratively update the efficiencies, the ISR correction
factors, the measured dressed cross sections, and the fitted
line shape. After four iterations, the fit to the measured
dressed cross section converged.

TABLE I. The fitting results of the dressed cross sections.
Result 1 Result 2 Result 3
M, MeV/c?) 41868 £8.7 41941+6.8 4195.6+6.5
'y MeV) 55+ 15 61.1+8.5 61.7+7.7
M, MeV/c?) 44146+£34 44119+32 4411.1+32
I, MeV) 1225+7.5 1202 +7.4 1199+73
My MeV/c?) 47933 +£6.7 4789.7+8.7 4786.0+9.4
I'; MeV) 27.1+6.5 42+75 60 £+ 34

3 E 12
)+ ZBWJ(E m) l(/) +w61¢() (2)
j:2 Ec.m.
M, Bi(Ecm)V127aiT| \/7 3)
Ecm Egm_M2+lM Fl Cm
My BilEen)y/ 12200 BIDIDOLT,  [5E, ) @

The final fit of the dressed cross sections of ete™ —
Dt D:™ is taken to determine the parameters of the three
structures. In the nominal fit of the dressed cross sections,
only statistical uncertainties are considered. We find three
sets of fitting results with comparable goodness of fit,
which are shown in Fig. 2 and Table 1. Because of the
limited number of data points around 4.79 GeV, the fitted
mass of the third structure varies from 4786 to
4793.3 MeV/c? and the width from 27.1 to 60 MeV.
The statistical significance of the third structure exceeds
5.9¢ in all three fitting procedures, indicating that incor-
porating this amplitude leads to a more accurate description
of the cross sections compared to using only two BWs.
Besides the three BWs, one additional BW is tried to better
describe the data points around 4.55 GeV, but it is not kept
due to its small statistical significance.

The Born cross sections are obtained by applying the VP
correction on the dressed cross sections. The obtained
results are summarized in the Supplemental Material [48].
The systematic uncertainties for the measured Born cross
sections are described as follows, some of which are
common along all the energy points, while others are
estimated depending on the E_, range.

The systematic uncertainties of tracking (particle iden-
tification) efficiency are estimated to be 0.5% (0.5%) per
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K= and 0.2% (0.4%) per #* with a control sample of D —
K*K~n* decays [49]; thus a 1.2% (1.4%) systematic
uncertainty is assigned for the tracking efficiency (particle
identification) in the D¥ — K*K~z" candidates selection.
The systematic uncertainty in the efficiency for photon
reconstruction is set conservatively to 1% based on a study
with a sample of J/w — pz events [50]. From fits of the
invariant mass spectrum of D¥ — K™K~ z* candidates and
of the modified missing mass of Di* — yK* K~z can-
didates, the efficiencies for signal in the mass window for
both data and MC samples can be calculated, and the
relative differences in efficiency between data and MC
simulation are taken as systematic uncertainties for the D
mass window and the modified missing mass window,
respectively, which cover the possible resolution difference
and the zero width setting for D** in MC simulation. The
maximum difference in the dressed cross sections between
the last two iterations, 0.2%, is taken as the systematic
uncertainty for the stability of the iteration results. The
systematic uncertainty of the branching fraction for D —
KTK~n* and Di* — yD¥ is taken from Ref. [35]. The
integrated luminosities are measured by QED events [51]
with a systematic uncertainty of 1%. The uncertainty from
VP correction is 0.1% [41]. The uncertainty of the peaking
background subtraction from the e*e™ — D D; process
is estimated to be 1% mainly from the uncertainties of cross
section measurement. Instead of the HELAMP model, the
PHSP model [31,32] is also used to generate ete™ —
D**D;T events and the maximum difference in efficiency,
2.2%, is taken as the systematic uncertainty for the
generation model. We get the total common systematic
uncertainty by adding them in quadrature, which is 4.0%.

The shape related parameters Am, Ao, and ¢, are fixed to
the averaged values in the nominal fit (see Fig. 1 for an
example). The differences of the fitted signal yields, when
these parameters are floating, are within statistical uncer-
tainties. However, to cover these differences conservatively,
the whole energy range is divided into three intervals

TABLE II.

(4.226,4.3), (4.3,4.4), and (4.4,4.95) GeV with assigned
systematic uncertainties 2%, 5%, and 2%, respectively, due
to the signal and background shapes. The boundaries
of the nominal fitting range for M, kg, which is

[2.02,2.20] GeV/c?, are changed by 10 MeV to estimate
the corresponding fitting range uncertainties. These are
assigned to be 4%, 5%, and 4%, respectively, in the energy
intervals (4.226,4.3), (4.3,4.4), and (4.4,4.95) GeV.
Equataion (2) is used to fit the data iteratively and get
the converged dressed cross sections, during that the cross
section line shape is similar to the one in Fig. 2(a). Other
two different lineshapes with comparable fitting goodness,
that are similar to the results shown in Figs. 2(b) and 2(c),
plus an additional lineshape obtained by the LOWESS
(LOcally WEighted Scatterplot Smoothing) [52,53], are
used to calculate the systematic uncertainties for the line-
shape description by repeating the iterations and taking the
differences in the results. The systematic uncertainty of the
measured E, , is found to be less than 0.8 (0.6 MeV) for
4226 < E., <46 (4.6 <E., <4.95GeV) [25-27]
and it is used to shift all the energy points to conservatively
estimate the impacts on the measured cross sections. Since
the cross section lineshape varies dramatically near the
threshold, the E_, uncertainty could have significant
impact on the ISR correction factors nearby, subsequently
affecting the measured cross sections and the fitting results
around the threshold. The MC samples at the first four E, ,,
points near the threshold are regenerated with the shifted
energies to update ISR corrections. After the iterations with
the shifted energy points and the updated ISR correction
factors near threshold, the resulting differences in the Born
cross sections are taken as the systematic uncertainties due
to the E, ,, uncertainty. These systematic uncertainties are
summarized in Table II by assuming no correlation among
different sources.

The sum of three BW amplitudes with the one for the
phase-space is an imperfect model, but it is useful to
describe the cross section line shape smoothly for the
iterative ISR correction procedure and to obtain masses and

Relative systematic uncertainties of the measured Born cross sections. As the effects and the data statistics are energy

dependent, some systematic uncertainties are estimated in several energy intervals combining some datasets with low luminosities.

Sources Systematic uncertainties (%)

Common 4.0

Energy (interval) (GeV) 4226 4.228 4233 4233~424 424~43 43~44 44~482 4843 4.86~4.95

Signal yields fitting with 2.0 5.0 2.0
fixed parameters

Signal yields fitting range 4.0 5.0 4.0

Cross section line 5.0 2.0 5.0 2.0 5.0 2.0
shape description

E. .. uncertainty 24.5 20.0 9.4 0.8

Total 25.7 21.5 12.2 7.9 6.4 9.6 6.4 7.9 6.4
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TABLE III. The systematic uncertainties of the fitted masses
and widths. Fitting represent the uncertainty from the multiple
fitting results. R represent the uncertainty from the barrier radius,
E. .. the systematic errors from the E_, uncertainty and the
Odressed the systematic uncertainties on the measured dressed cross
sections.

Sources Fitting R E. O dressed Total
M, MeV/c?) 8.8 2.9 28.3 5.1 30
' MeV) 6.7 1.9 51 11.8 53
M, MeV/c?) 35 0.6 4.0 3.0 6.1
I, (MeV) 2.6 0.2 7.6 1.0 8.1
M; MeV/c?) 7.3 1.0 2.4 5.1 9.3
I'; (MeV) 329 1.1 5.3 3.4 34

widths of the resonance(-like) structures for reference. The
systematic uncertainties of the fitted masses and widths of
the three resonances are listed in Table III. There are three
fitting results as listed in Table I with comparable goodness
of fit. The fitting result 1 is taken as the nominal one, and
the biggest differences in the fitted central values between
result 1 and the other two are taken as the systematic
uncertainties from the multiple fitting results. The param-
eter R is changed from 1.6 in the nominal fit to 5 GeV~!
(corresponds the scale of the strong interaction which is
about 1 fm) [47,54], and the variations in the fitting results
are taken as the corresponding systematic uncertainties.
The uncertainty from the measured E., has impact not
only on the cross sections but also on the fitting results.
After the iterations with the shifted energies and the
updated ISR correction factors, the differences in the fitting
results are considered as the uncertainty from the E_
uncertainty. The systematic uncertainties on the measured
dressed cross sections, which are considered as the same as
these on the Born cross sections since the uncertainty from
VP correction is negligible, consist of a common part and
an uncommon part. The common part is the same for all
energies and has no effect on fitted masses and widths of
the BW functions. The uncommon part is included to redo
the cross section fitting and the resulting differences are
taken as systematic uncertainties.

In summary, with the world’s largest eTe™ scan data
sample between 4.226 and 4.95 GeV accumulated by
BESIIIL, the Born cross sections of ete™ — DitDi™ are
measured precisely. Two enhancements in the £, ,, depen-
dent cross sections are observed around 4.2 and 4.45 GeV.
The E., dependent cross section lineshape is modeled
with a sum of three BW and one PHSP amplitudes. The
fitted mass and width for the first resonance are (4186.8 +
8.7+ 30) MeV/c?> and (554154 53) MeV, respec-
tively. These results are consistent with the w/(4160)
observed in the inclusive cross section of ete™ —
hadrons [55] and in the dimuon spectrum of B~ —
K p"u~ [56]. While considering the systematic

uncertainties, these results are also consistent with
w(4230) observed in the ztz~J /y mode. The fitted mass
and width for the second resonance are (4414.6 3.4 +
6.1) MeV/c? and (122.5 +7.5 4 8.1) MeV, respectively.
The mass is consistent with y(4415), and the measured
width from this work is a bit higher than the world average
value of w(4415) [35], but still within three standard
deviations. If we assume that this resonance is the
y(4415), this is the first time that this state is observed
in the Di*D}~ decay mode. An additional third BW
amplitude describes the E_, dependent cross sections
around 4.79 GeV better than just using two BW functions,
with statistical significance greater than 5.90, however,
more data points in the vicinity are needed for further
clarification [57]. It is out of the scope of this Letter, but a
unitary approach based on K-matrix formalism to fit the
cross-section results of various exclusive channels is
expected to be carried out as a more comprehensive and
robust analysis of the vector-charmonium(-like) structures
(for instance, an analysis for vector bottomonia with this
method can be found in Ref. [58]).
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