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Entanglement is resolved in conformal field theory (CFT) with respect to conformal families to all orders
in the UV cutoff. To leading order, symmetry-resolved entanglement is connected to the quantum
dimension of a conformal family, while to all orders it depends on null vectors. Criteria for equipartition
between sectors are provided in both cases. This analysis exhausts all unitary conformal families.
Furthermore, topological entanglement entropy is shown to symmetry-resolve the Affleck-Ludwig
boundary entropy. Configuration and fluctuation entropy are analyzed on grounds of conformal symmetry.
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Introduction.—Since its discovery in 1935 [1], entangle-
ment has been at the core of quantum theory [2]. In modern
days, it is advancing our understanding of physics on many
frontiers including phases of matter and quantum informa-
tion [3] or gravity [4], to name a few. It is thus important to
distill the fineprints of entanglement. One recently suc-
cessful route revolves around symmetries. They organize
the entanglement spectrum into various charge sectors,
permitting to investigate how these contribute to entangle-
ment [5–7]. This so-called symmetry resolution of entan-
glement (SRE) has been applied so far to global internal
symmetries in quantum field theories (QFT) and finite-
dimensional systems [6–28]. Reassuringly, some results are
already finding experimental realization [29–32].
For Abelian groups, entanglement is inspected with

regards to fixed charge eigenvalues. Surprisingly, in all
studied systems each charge sector contributes equally to
entanglement to leading order in a UV cutoff ϵ. This
equipartition of entanglement [8] is usually broken atOðϵÞ.
Turning to non-Abelian groups G, the focus is shifted to
organizing the entanglement spectrum into representations
of G [10,33]. These are also equipartitioned to leading
order, however, only up to Oð1Þ. Overall, equipartition is a
ubiquitous feature, yet its origin remains somewhat elusive.
For U(1) CFTs it was recently associated with the Fock
space structure [19].
In this Letter, entanglement is resolved with respect

to conformal symmetry in ð1þ 1Þd, which is a pillar of
theoretical physics with numerous applications includ-
ing critical phenomena [34–37], strongly interacting
systems [38,39], topological phases of matter [40–43],

nonequilibrium physics [44,45], and through the AdS=CFT
correspondence [46], it plays a key role even in gravity
[4,33,47].
An obvious choice, in line with the lore on SRE, is to

resolve with respect to L0 eigenspaces, corresponding to
states of equal energy. In this Letter, the entanglement
spectrum is resolved instead with respect to irreducible
representations of the Virasoro algebra Vir, i.e., conformal
families, as this allows the full power of conformal
symmetry to come to bear. Indeed, this Virasoro resolution
is shown below to harbor remarkably rich physics. Two
novelties, compared with conventional resolution, can be
pointed out right away however. First, conformal symmetry
is a spacetime symmetry. Hence it may contain global and
local transformations [48]; Vir indeed contains an infinity
of the latter. Second, in contrast to conventional non-
Abelian SRE, the investigated representations are infinite
dimensional. This Letter shows that such infinities present
no hurdles for SRE. In fact, as so often in CFT, they are
virtues.
Virasoro resolution is promising on many frontiers. For

instance, it can indicate which families, or anyons, have the
most relevance for ground state entanglement in gapped
and topological phases of matter adjacent to critical points
[37]. By universality, these results extend to a plethora of
systems. Turning to gravity, as shown below, the entangle-
ment stored by the vacuum family is distinguished while all
other families are equipartitioned.
Estabilishing Virasoro resolution and elaborating its

details is the subject of this Letter. At Oðϵ0Þ, it is shown
to be controlled by the topological entanglement entropy
(TEE) [49,50]. The requirements for equipartition between
two conformal families are derived and exemplified in
Virasoro minimal models. Remarkably, Virasoro resolution
can be pushed to all orders in ϵ, permitting an in-depth
analysis of equipartition between two families, which
explains its origin and even how it can be manufactured.
Furthermore, the TEE is shown to Virasoro resolve the
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Affleck-Ludwig boundary entropy of the entanglement
spectrum, thereby establishing the former as building
blocks of the latter. Finally, complete equipartition of the
entanglement spectrum is analyzed. Elaborate calculations
are found in the Supplemental Material [51]. It is empha-
sized that Virasoro resolution is performed on general
grounds and applies to entire classes of CFTs. Particular
models are only drawn in as examples.
Entanglement in QFT.—Entanglement requires a fac-

torization into a product Hilbert space H ¼ HA ⊗ HB,
which is usually associated with spatial domains A and B.
To implement this in QFT [52,53], boundary conditions
need to be assigned on the fields at the boundaries ∂A and
∂B. Specifying to ð1þ 1Þd and a single entangling interval
A, this is achieved by excising the two entangling points
comprising ∂A with two small disks of radius ϵ ≪ 1 and
imposing boundary conditions α and β thereon [52], see
Fig. 1. This manifold is calledR in the following. Formally,
this is accomplished by a factorization mapping on Hilbert
space

{αβ∶ H → HA;αβ ⊗ HB;αβ; {αβ∶jψi ↦ {jψi; ð1Þ

for jψi∈H. In this way, the subfactor Hilbert spaces
depend on boundary conditions in a QFT, as is confirmed
numerically [54–56]. Using QFT as a continuum limit of
lattice systems, the boundary conditions α, β descend from
boundary conditions imposed at the interval ends ∂A at the
level of the lattice, as exemplified below.
A density matrix is reduced to HA;αβ by tracing over B,

ρA ≔ TrHB;αβ
½{jψihψ j{†�. Entanglement between degrees of

freedom in A and B is quantified for pure states by the
Rényi entropies

Sαβn ¼ ð1 − nÞ−1 log trρnA ¼ ð1 − nÞ−1 log
�

Zαβ
n

ðZαβ
1 Þn

�
; ð2Þ

where the superscripts associate it with the factorization {αβ,

tr denotes the trace over HA;αβ and Zαβ
n is the partition

function of the QFT on an n-fold replicated manifold Rn
of R.
Conformal factorizations.—The focus of this note lies on

ð1þ 1Þd CFTs. They have symmetry algebra Vir × Vir,

generated by the energy-momentum tensors T; T̄ and
a field content captured by a bulk partition function
Zbulkðq; q̃Þ ¼

P
i;{̄ Mi{̄χiðqÞχ {̄ðq̄Þ. It has conformal charac-

ters χiðqÞ ¼ trHi
½qL0−c=24�, where Hi ≡Hðc; hiÞ is an irre-

ducible Virasoro module at conformal weight hi and central
charge c.
In this text, the entanglement structure of the vacuum in

Zbulkðq; q̄Þ, denoted jhi ¼ 0; h{̄ ¼ 0i with density matrix
ρ ¼ j0; 0ih0; 0j, is investigated. Furthermore, factorizations
{αβ given by conformal boundary conditions α, β. They
require T̄ ¼ T at the disks and c̄ ¼ c. Such {αβ are referred
to as conformal factorizations. Their relevance for entan-
glement spectra of gapped phases renders them important
even away from critical points [37,40].
It is useful to restrict to the setups studied in [57] for

which R can be conformally mapped to an annulus of
width W and height 2π, which enter computations via
q ¼ e−2π

2=W; q̃ ¼ e−2W . E.g., for a density matrix ρ at
zero temperature and on the infinite real line, W ¼
2 log½lengthðAÞ=ϵ�. Zαβ

n is then calculated on an annulus
of height 2πn and width W, see Fig. 1. In this case, the
reduced density matrix is

ρA ¼ qL0−c=24

ZαβðqÞ
; ZαβðqÞ ¼

X
i∈ σ

niαβχiðqÞ; ð3Þ

where ZαβðqÞ ¼ trqL0−c=24 quantifies the entanglement

spectrum HA;αβ ¼ ⨁i∈ σH
⊕niαβ
i , with multiplicities

niαβ ∈N, imposed by (1). The normalization secures
trρA ¼ 1. If the set of all conformal families at central
charge c is denoted I, then σ ⊂ I denote the conformal
families occurring in the entanglement spectrum. The
ground state jΩi in the entanglement spectrum is the
primary of lowest conformal dimension. For nonunitary
theories it can be negative, hΩ < 0 [36].
To illustrate this machinery, consider the critical Ising

chain H ¼ P
j∈Zðσzjσzjþ1 þ σxjÞ, which corresponds to the

Ising CFT in the continuum. The CFT Hilbert space H
in (1) contains three primaries, σ ¼ f1; ϵ; σ̃g, which in turn
label the boundary conditions, α∈ σ. When choosing a
subregion A in the chain, the spins at the interval ends ∂A
are typically left free. This descends to the CFT boundary
conditions α ¼ β ¼ σ̃, i.e., it pertains to a factorization {σ̃ σ̃
with entanglement spectrum Zσ̃ σ̃ ¼ χ1 þ χϵ [52]. On the
other hand, the spins in the chain can also have fixed
boundary conditions at ∂A. Equal orientation of these two
spins leads to the CFT entanglement spectrum Z11 ¼ χ0,
while opposite orientation descends in the CFT to Z1ϵ ¼ χϵ.
Lastly, fixing the spin at one end of the chain and leaving it
free at the other leads to Z1σ̃ ¼ χσ̃ in the CFT [52].
Returning to generality, this framework readily provides

Rényi entropies for ρ ¼ j0; 0ih0; 0j [52],

FIG. 1. The factorization {αβ imposes disks with boundary
conditions α, β, thereby placing the system on the manifold R.
Replicating this to Rn, tracing over HB;αβ and a subsequent
conformal transformation provides an annulus of width W and
circumference 2πn.
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Sαβn ¼ 1

1 − n
log

�
ZαβðqnÞ
ðZαβðqÞÞn

�
≈ SΩn þ Sαβbdy þ � � � : ð4Þ

While the first equality is valid for any CFT, the approxi-
mation is valid only for rational CFTs, for which the set of
conformal families I is finite. It applies in the limit q → 1−

and q̃ → 0þ, where the character of the ground state Ω
dominates the entanglement spectrum. The boundary
entropy, Sαβbdy ¼ log½gαgβ�, furnished by the Affleck-
Ludwig g factors [58], is a measure of the (asymptotic)
size of the entanglement spectrum associated with the
factorization {αβ. It cannot be absorbed for all n by rescaling
of ϵ and is thus physical [57]. The first summand is
responsible for the well-known leading behavior of entan-
glement entropy [52,59],

SΩn ¼ ð1 − nÞ−1 log
�
χΩðq̃1=nÞ
ðχΩðq̃ÞÞn

�
≈
ceffW
12

nþ 1

n
þ � � � ; ð5Þ

where ceff ¼ c − 24hΩ and W → ∞ as ϵ → 0.
Virasoro resolution.—The remainder of this Letter

explains how the conformal families comprising the entan-
glement spectrum, i.e., the set σ, contribute to entanglement
in the state ρ ¼ j0; 0ih0; 0j.
As implicitly used in (3) for conformal factorizations,

Zαβ decomposes into irreducible Virasoro representations i.
Because the reduced density matrix (3) lies in the (global)
conformal group, it decomposes into block-diagonal form

ρA ¼ ⨁
i∈ σ

ΠiρA ¼ ⨁
i∈ σ

pαβi ρAðiÞ: ð6Þ

If fji; mig is a basis for Hi labeled by m∈N0, then Πi ¼P∞
m¼0 jm; iihm; ij is a projector onto Hi. Each family i has

a density matrix block

ρAðiÞ ¼ ½niαβχiðqÞ�−1qL0−c=24; ð7Þ

with L0 restricted toH
⊕niαβ
i , securing that trρAðiÞ ¼ 1. Such

blocks comprise the entanglement degrees of freedom in
the family i, measured with probability

pαβi ¼ tr½ΠiρA� ¼ niαβ
χiðqÞ
ZαβðqÞ

for i∈ σ ð8Þ

and zero otherwise. This uses (3) and the reader is reminded
that tr ¼ trHA;αβ

. Clearly,
P

i∈ σ p
αβ
i ¼ 1. The probabilities

(8) are then ¼ 1 caseof charge-projectedpartition functions,

Zαβ
n ðiÞ ≔ tr½Πiρ

n
A� ¼ niαβ

χiðqnÞ
½ZαβðqÞ�n

for i∈ σ: ð9Þ

They give rise to the symmetry-resolved Rényi entropies
(SRRE)

Sαβn ðiÞ ≔ tr½ρAðiÞn�
1 − n

¼ 1

1 − n
log

�
Zαβ

n ðiÞ
½Zαβ

1 ðiÞ�n
�

¼ 1

1 − n
log

�
ðniαβÞ1−n

χiðqnÞ
½χiðqÞ�n

�
: ð10Þ

This is the central result of this Letter and, after two remarks,
it is shown to bear remarkably rich physics.
(i) One charge operator for Virasoro resolution is the

entanglement Hamiltonian KA ¼ ðπ=WÞðL0 − c=24þ
constÞ itself, though eigenvalues of L0 are taken modulo
integers. This identification associates all descendants
generated by the entanglement Vir algebra [56] with a
primary jhii. Hence, Virasoro sectors are easily read out
from the entanglement spectrum by rewriting each energy ξ
as ξ ¼ hi þ n for n∈N0, thereby connecting any ξ to one
family i∈ σ. The central charge (operator) is a second
charge operator. Together, the pair ðhi; cÞ uniquely iden-
tifies a conformal family.
(ii) Charged moments are completely bypassed in this

text by the powerful tools of representation theory custom-
ary in CFT. This approach was pioneered in [19] for the
simple case of U(1) symmetry and is further developed here
to suit conformal symmetry. In particular, conformal
characters have more structure than their U(1) counterparts.
This provides profound insight into (10) in what follows.
Asymptotic equipartition and TEE.—The SRRE (10) is

now analyzed for rational CFTs with respect to Vir,
meaning that I is finite, and in the limit q → 1−

(q̃ → 0þ); this is referred to as “asymptotic” and corre-
sponds to ϵ → 0þ. To that end, introduce the modular
S matrix via χiðqÞ ¼

P
k∈ IðS−1Þikχkðq̃Þ ≈ SiΩχΩðq̃Þ [51].

The SRRE (10) is thus approximated by

Sαβn ðiÞ ≈ SΩn þ SαβtopðiÞ þ � � � ð11Þ

The appearance of SΩn explains the origin of leading-order
equipartition for all rational CFTs. The second term is
Oðϵ0Þ, cannot be absorbed for all n by rescaling ϵ, and is
thus physical. It is the TEE [49,50],

SαβtopðiÞ ≔ − log½D=ðniαβDiÞ� ¼ logðniαβSiΩÞ ð12Þ

built from the quantum dimensions Di ≔ SiΩ=S1Ω and
total quantum dimension D≡ ðPi∈ I D

2
i Þ1=2 ¼ ðS1ΩÞ−1

[60]. The Di measure the “asymptotic size” of the family
i in relation to the vacuum family i ¼ 1 [51].
This provides a simple rationale to determine if

two conformal families i and j are asymptotically equi-
partitioned, i.e., Sαβn ðiÞ ¼ Sαβn ðjÞ at q̃ → 0þ; ðϵ → 0þÞ.
Asymptotic ij equipartition occurs if

SαβtopðiÞ ¼ SαβtopðjÞ for i; j∈ σ and i ≠ j: ð13Þ
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Since the multiplicities niαβ are integer and the Di are
usually not, (13) entails two requirements. Families of
equal asymptotic size, Di ¼ Dj, and equal “weight” in the

entanglement spectrum Zαβ, niαβ ¼ njαβ, harbor the same
amount of information at leading order in the UV cutoff ϵ in
the factorization {αβ. This is emphasized by noting that (13)

can be rephrased as pαβi ¼ pαβj with asymptotic probabil-
ities, as derived from (8),

pαβi ≈
niαβSiΩ

gαgβ
¼ niαβDiP

j∈ σn
j
αβDj

: ð14Þ

A large class of solutions to (13) for Virasoro minimal
models is provided in the Supplemental Material [51]. The
simplest example thereof arises in the Ising CFT with its
three primaries 1, ε, σ̃ and S11 ¼ S1ε ¼ 1=2 [36]. It
possesses a Cardy boundary condition labeled by σ̃
providing an entanglement spectrum Zσ̃ σ̃ ¼ χ1 þ χε [61]
pertaining to a factorization {σ̃ σ̃. Hence n1σ̃ σ̃ ¼ nεσ̃ σ̃ ¼ 1

which secures asymptotic 1ε-equipartition. As explained
above, this setup corresponds to an Ising chain with free
boundary conditions imposed at the interval ends.
Exact equipartition.—In order to analyze SRREs to all

orders, and beyond the regime of rational CFT, it is crucial
to recall the relation between irreducible Virasoro modules
Hi and null vectors. The former is obtained after appro-
priately quotienting out all null vectors in the Verma
module Vi for conformal weight hi; details are reviewed
in the Supplemental Material [51]. The character for Hi
reflects this null vector structure

χiðqÞ ¼
q

1−c
24

ηðqÞ νiðqÞ; ηðqÞ ¼ q1=24
Y∞
k¼1

ð1 − qkÞ; ð15Þ

via a function νiðqÞ. For instance, whenHi ¼ Vi is a Verma
module, i.e., it has no singular vectors, then νi ¼ qhi , and
when Vi carries a single null vector at level N,
νiðqÞ ¼ qhið1 − qNÞ. As usual, the Dedekind eta ηðqÞ
keeps track of descendants.
Plugging this structure into the SRRE (10), it becomes

Sαβn ðiÞ ¼ 1

1 − n
log

�
νiðqnÞ
νiðqÞn

�
þ log niαβ þ SVerma

n : ð16Þ

The first summand encodes now the detailed information
about the family i, the second term indicates its “weight” in
the entanglement spectrum (3) and the third term,

SVerma
n ≔

1

1 − n
log

�
ηðqnÞ
ηðqÞn

�

≈
W
12

nþ 1

n
−
1

2
log

�
W
π

�
þ 1

2

logn
1 − n

þ � � � ð17Þ

is universally appearing for all conformal families and
counts the information contained in a Verma module. The
leading order, obtained from ηðq̃1=nÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

nπ=W
p

ηðqnÞ,
mimicks (5), aside from the effective central charge ceff.
Note also the appearance of a double logarithmic term
logðW=πÞ prominent in U(1) resolution [7]. The analysis
here demonstrates firmly that the origin of this term is
rooted in conformal symmetry.
From (16) it is now clear that two distinct conformal

families i and j can be equipartitioned for all n, i.e.,
Sαβn ðiÞ ¼ Sαβn ðjÞ, if and only if

niαβ ¼ njαβ and
νiðqnÞ
½νiðqÞ�n

¼ νjðqnÞ
½νjðqÞ�n

ð18Þ

This is called (exact) ij equipartition. If this is the case for
all families i in the entanglement spectrum, i∈ σ, then the
factorization {αβ is completely equipartitioned [62]. Exact
equipartition is now analyzed in various CFTs:
(a) Virasoro minimal models appear at cðp; p0Þ ¼

1–6ðp − p0Þ2=ðpp0Þ < 1 with p; p0 ∈Z≥2 coprime. The
families are labeled by two integers 1 ≤ r ≤ p0 − 1 and 1 ≤
s ≤ p − 1 and have conformal weights hðr;sÞ ¼
½ðpr − p0sÞ2 − ðp − p0Þ2�=ð4pp0Þ. Each Verma module
Vðr;sÞ contains infinite null vectors leading to unique null
structures

νðr;sÞðqÞ ¼
X
k∈Z

ðqhðr;sþ2pkÞ − qhð−r;sþ2pkÞ Þ:

Hence, no two families can be exactly equipartitioned.
(b) Virasoro families at c ¼ 1: Verma modules are

reducible at c ¼ 1 only for h ¼ hm ¼ m2=4 with m∈Z,
in which case νmðqÞ ¼ qhmð1 − qmþ1Þ. The vacuum, hm¼0,
is of this type and has the null vector L−1j0i. Two families
hm; hm0 are never equipartitioned unless m0 ¼ m, as seen
from (18). All other families, i.e., h ¼ hμ ¼ μ2=4 with
μ∈CnZ, are nonsingular. Thus they have νμðqÞ ¼ qhμ and
are always equipartitioned, as long as their multiplicities in
the entanglement spectrum coincide. Hence, an example of
complete equipartition is easily found. Consider an XXZ
spin chain. It corresponds to the free boson CFT at c ¼ 1
(Luttinger liquid) in the continuum. Picking a subinterval A
in the chain with free (N) boundary conditions at one end
and fixed (D) boundary conditions at the other descends to
a Neumann-Dirichlet (ND) factorization {ND in the CFT
with entanglement spectrum [63,64],

ZNDðqÞ ¼
X∞
k¼1

χ
h¼ðk−1=2Þ2

4

ðqÞ ¼ 1

ηðqÞ
X∞
k¼1

q
ðk−1=2Þ2

4 ð19Þ

It only contains Virasoro families of type hμ with unit
multiplicities. Therefore (16) assumes the same value for
all families in ZND, SNDn fh ¼ ½ðk − 1=2Þ2�=4g ¼ SVerma

n .
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This result mimicks the well-known U(1) resolution [7].
This is deceiving, however, since both situations are
entirely different on physical grounds. Indeed, Sαβn ðiÞ ¼
SVerma
n can only be obtained in U(1) resolution for

U(1)-preserving factorizations {αβ, which is not the case
for (19) [19]. The lesson here is that Verma modules
contain as much information as U(1) families, as should be
since their characters are in fact identical.
(c) Unitary Verma factorizations: Define a Verma fac-

torization {Vαβ as one where all i∈ σ have nonsingular Verma
modules Vi, i.e., νiðqÞ ¼ qhi . By Eq. (16), these are always
equipartitioned once all multiplicities niαβ agree, in which
case they can be normalized, niαβ ¼ 1. The converse is not
necessarily true once nonunitary families are involved [65].
Thus, define unitary factorizations {Uαβ, as one for which all
i∈ σ are unitary families, i.e., c ¼ cðp; p0Þ > 0 and hi ¼
hðr;sÞ or c ≥ 1 and hi ≥ 0 [36]. Among the {Uαβ, it is only the

Verma factorizations, labeled {UV
αβ , which are completely

equipartitioned, once all niαβ ¼ 1. This is gathered from the
examples above and the following one.
(d) Unitary factorizations at c > 1: The only unitary

family with a null vector at c > 1, namely, L−1j0i, is the
vacuum 1 [36]. This implies ν1ðqÞ ¼ 1 − q, while all other
families are nonsingular and have νi≠1ðqÞ ¼ qhi . A power-
ful consequence ensues. Any {Uαβ at c > 1 with 1 ∉ σ is

Verma, i.e., {UV
αβ , and thus completely equipartitioned so

long as all multiplicities coincide. A necessary condition
for this is β ≠ α, which imposes boundary condition
changing operators.
From an information theoretic point of view, Vir cannot

discriminate amongst its unitary families with hi > 0 and
c > 1 via (10); they store the same amount of information.
This underpins the special role of the vacuum in gravity
[66,67], which is accessed by CFT in the holographic
regime, c ≫ 1. Gravitational duals of Virasoro resolution
must thus accentuate the vacuum.
Virasoro resolution of Sαβbdy.—While the previous sec-

tions studied the SRRE (10) in isolation, the remainder of
this Letter investigates its consequences for the full
entropy (4).
The von-Neumann entropy decomposes into the con-

figuration Sc and fluctuation entropy Sf [29,68–73], i.e.,
Sαβ1 ¼ Sαβc þ Sαβf , where

Sαβc ¼
X
i∈ σ

pαβi Sαβ1 ðiÞ; Sαβf ¼ −
X
i∈ σ

pαβi logpαβ:i ð20Þ

While Sc collects and averages the entanglement stored
within each family i, Sf accounts for the entanglement
between the families. The relation Sαβ1 ¼ Sαβc þ Sαβf is
confirmed at all orders in the Supplemental Material
[51]. A profound information-theoretic relation is revealed

when contemplating this decomposition asymptotically,
i.e., in the limit q → 1−,

Sαβbdy ¼
X
i∈ σ

pαβi ðSαβtopðiÞ − log pαβi Þ; ð21Þ

where Eqs. (4), (11), and (14) have been employed. Indeed,
the TEE (12) Virasoro resolves the boundary entropy Sαβbdy!
Moreover, this result only requires the existence of a
modular Smatrix, lifting (21) to a general lemma in rational
CFTs, where i labels families of an extended chiral sym-
metry algebra appearing in the entanglement spectrum.
Verma factorizations {Vαβ.—To investigate complete equi-

partition further, it is useful to isolate the family-dependent
terms in the entropies (4) and (10) via sαβn ≔ Sαβn − SVerma

n

and sαβn ðiÞ ≔ Sαβn ðiÞ − SVerma
n . This allows one to recast the

entropies (20) [51],

Sαβc ¼ SVerma
1 þ

X
i∈ σ

pαβi sαβ1 ðiÞ; ð22Þ

Sαβf ¼ sαβ1 −
X
i∈ σ

pαβi sαβ1 ðiÞ: ð23Þ

Once sαβ1 ðiÞ ¼ 0 for all i∈ σ, synonymous with {Vαβ and

niαβ ¼ 1, it follows that Sαβc ¼ SVerma
1 and Sαβf ¼ sαβ1 . In this

case, configuration and fluctuation entropy can be intro-
duced at all n∈N, Sαβn ¼ Sαβc;n þ Sαβf;n [19],

Sαβc;n ≔
1

1 − n
log tr½ρAðiÞn� ¼ SVerma

n ; ð24Þ

Sαβf;n ≔
1

1 − n
log

�X
i∈ σ

ðpαβi Þn
�
¼ sαβn : ð25Þ

These expressions are derived in the Supplemental
Material [51].
As expected from a configuration entropy, Eq. (24)

accounts for the correlations within each family, resulting
in the information contained in Verma modules. On the
other hand, the entropy between the families i is quantified
by Eq. (25), which contains all information on the primaries
of the theory. Clearly, Sαβf;n ¼ 0, if and only if σ consists of a
single family. A glance at (22) reveals how this entangle-
ment structure is deformed by families with singular Verma
modules. This introduces primary dependence in Sc;n
through null vector structures νi ≠ qhi .
Discussion and outlook.—Many results of this Letter,

such as Eqs. (10), (11), (13), (18), or (21), naturally lift to
CFTs with extended symmetry, for instance Kac-Moody
symmetry, by suitably replacing the modular S matrix and
characters. The prevalence of such CFTs [36,38,43,74]
enhances the applicability of the resolution discussed here
tremendously. Equipartition is again analyzed by size
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comparisons of charge sectors. Note that the TEE appeared
in (11) purely on grounds of conformal representations, and
without relation to topological order. Hence, an intriguing
continuation of the present work is to explore connections
with such phases of matter. In these cases symmetry
resolution should correspond to the extraction of entangle-
ment in one anyon sector, promising insight into gapless
[75] and gapped topological systems [76] including the
quantum Hall effect [77].
It will be interesting to apply the reasoning developed

here to gravity. In general, it should be possible to reverse
engineer constraints on the spectrum of a CFT from its
entanglement spectrum. Unfortunately, Virasoro resolution
can only distinguish the vacuum, so it is worthwhile to
generalize the present construction to extended symmetries
attuned to gravity, such as higher spin symmetry [78]. The
study of its entanglement spectrum should provide con-
straints on the spectrum of ð2þ 1Þd gravity [47,79].
Finally, using the g theorem [80] it will be interesting to

study whether (21) has implications for SαβtopðiÞ under
boundary renormalization group flows.
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Greiner, Science 364, 256 (2019).

[30] D. Azses, R. Haenel, Y. Naveh, R. Raussendorf, E. Sela, and
E. G. Dalla Torre, Phys. Rev. Lett. 125, 120502 (2020).

[31] A. Neven et al., npj Quantum Inf. 7, 152 (2021).
[32] V. Vitale, A. Elben, R. Kueng, A. Neven, J. Carrasco, B.

Kraus, P. Zoller, P. Calabrese, B. Vermersch, and M.
Dalmonte, SciPost Phys. 12, 106 (2022).

[33] A. Milekhin and A. Tajdini, SciPost Phys. 14, 172 (2023).
[34] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov,

Nucl. Phys. B241, 333 (1984).
[35] J. L. Cardy, Scaling and Renormalization in Statistical

Physics (Cambridge University Press, 1996), ISBN
9780521499590.

[36] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal
Field Theory, Graduate Texts in Contemporary Physics
(Springer-Verlag, New York, 1997), 10.1007/978-1-4612-
2256-9.

[37] G. Y. Cho, A. W.W. Ludwig, and S. Ryu, Phys. Rev. B 95,
115122 (2017).

[38] A. O. Gogolin, A. A. Nersesian, and A.M. Tsvelik, Boso-
nization and Strongly Correlated Systems (Cambridge
University Press, 2004), ISBN 9780521617192.

[39] D. Senechal, in Proceedings of the CRM Workshop on
Theoretical Methods for Strongly Correlated Fermions
(1999), arXiv:cond-mat/9908262.

PHYSICAL REVIEW LETTERS 131, 151601 (2023)

151601-6

https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1017/S0305004100013554
https://doi.org/10.1017/S0305004100013554
https://doi.org/10.1007/978-3-319-52573-0
https://doi.org/10.1007/JHEP11(2013)052
https://doi.org/10.1007/JHEP11(2013)052
https://doi.org/10.1007/JHEP12(2013)059
https://doi.org/10.1103/PhysRevLett.120.200602
https://doi.org/10.1103/PhysRevLett.120.200602
https://doi.org/10.1103/PhysRevB.98.041106
https://doi.org/10.1103/PhysRevB.98.041106
https://doi.org/10.1088/1742-5468/ab96b6
https://doi.org/10.1088/1742-5468/ab96b6
https://doi.org/10.1007/JHEP10(2021)067
https://doi.org/10.1007/JHEP10(2021)067
https://doi.org/10.1007/JHEP08(2020)073
https://doi.org/10.1007/JHEP08(2020)073
https://doi.org/10.1007/JHEP11(2020)131
https://doi.org/10.1007/JHEP11(2020)131
https://doi.org/10.1007/JHEP02(2022)117
https://doi.org/10.1007/JHEP07(2021)084
https://doi.org/10.1007/JHEP07(2021)030
https://doi.org/10.1007/JHEP07(2021)030
https://doi.org/10.1007/JHEP12(2021)104
https://doi.org/10.1007/JHEP12(2021)104
https://doi.org/10.1007/JHEP05(2022)166
https://doi.org/10.1007/JHEP05(2022)166
https://doi.org/10.1007/JHEP06(2022)068
https://doi.org/10.21468/SciPostPhysCore.6.3.049
https://doi.org/10.1088/1751-8121/abcc3a
https://doi.org/10.1103/PhysRevA.98.032302
https://doi.org/10.1103/PhysRevA.98.032302
https://doi.org/10.1088/1751-8121/ab4b77
https://doi.org/10.1088/1751-8121/ab4b77
https://doi.org/10.21468/SciPostPhys.8.3.046
https://doi.org/10.21468/SciPostPhys.8.3.046
https://doi.org/10.21468/SciPostPhys.11.4.085
https://doi.org/10.1103/PhysRevB.101.235169
https://doi.org/10.1103/PhysRevD.106.046015
https://doi.org/10.1103/PhysRevD.106.046015
https://doi.org/10.1103/PhysRevB.104.L220301
https://doi.org/10.1103/PhysRevB.104.L220301
https://doi.org/10.1103/PhysRevB.107.115113
https://doi.org/10.1103/PhysRevB.107.115113
https://doi.org/10.1126/science.aau0818
https://doi.org/10.1103/PhysRevLett.125.120502
https://doi.org/10.1038/s41534-021-00487-y
https://doi.org/10.21468/SciPostPhys.12.3.106
https://doi.org/10.21468/SciPostPhys.14.6.172
https://doi.org/10.1016/0550-3213(84)90052-X
https://doi.org/10.1007/978-1-4612-2256-9
https://doi.org/10.1007/978-1-4612-2256-9
https://doi.org/10.1103/PhysRevB.95.115122
https://doi.org/10.1103/PhysRevB.95.115122
https://arXiv.org/abs/cond-mat/9908262


[40] G. Y. Cho, K. Shiozaki, S. Ryu, and A.W.W. Ludwig,
J. Phys. A 50, 304002 (2017).

[41] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504
(2008).

[42] X.-L. Qi, H. Katsura, and A.W.W. Ludwig, Phys. Rev. Lett.
108, 196402 (2012).

[43] B. Han, Applications of conformal field theories in topo-
logical phases of matter, Ph.D. thesis, Illinois University,
Urbana, 2019.

[44] K. Gawedzki, E. Langmann, and P. Moosavi, J. Stat. Phys.
172, 353 (2018).

[45] D. Bernard and B. Doyon, J. Stat. Mech. (2016) 064005.
[46] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[47] E. Witten, arXiv:2111.06514.
[48] The reader might be tempted to argue that internal sym-

metries can also be local, i.e., be gauge symmetries.
However, they are redundancies of the description rather
than actual symmetries.

[49] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
[50] M.Levin andX.-G.Wen, Phys. Rev. Lett. 96, 110405 (2006).
[51] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.131.151601 for a light-
ning review of conformal characters and quantum dimen-
sions. As well as calculations on the asymptotic form of
entropy and entropy decompositions are provided. Finally, a
large class of solutions to the requirement of coinciding
quantum dimensions for Virasoro families are worked out.

[52] K. Ohmori and Y. Tachikawa, J. Stat. Mech. (2015) P04010.
[53] R.Brustein and J.Kupferman,Phys.Rev.D83, 124014 (2011).
[54] A. M. Läuchli, arXiv:1303.0741.
[55] A. Roy, F. Pollmann, and H. Saleur, J. Stat. Mech. (2020)

083104.
[56] Q. Hu, A. Franco-Rubio, and G. Vidal, arXiv:2009.11383.
[57] J. Cardy and E. Tonni, J. Stat. Mech. (2016) 123103.
[58] I. Affleck and A.W.W. Ludwig, Phys. Rev. Lett. 67, 161

(1991).
[59] P. Calabrese and J. Cardy, J. Phys. A 42, 504005 (2009).
[60] The TEE is usually defined as − logðD=DiÞ. Since it counts

the entropy coming from one type of anyon, or in this case
conformal family, it is natural to include the multiplicities
niαβ into the definition (12). This corroborates that the TEEs
depend on the factorization {αβ. For unitary theories Ω ¼ 1,
so that the definition of Di ¼ SiΩ=S1Ω reduces to the
standard definition in the literature Di ¼ Si1=S11. The
definitions given in the text are natural extensions to
nonunitary theories.

[61] J. L. Cardy, Nucl. Phys. B324, 581 (1989).

[62] Exceptions are, of course, factorizations {αβ with only a
single family, HA;αβ ¼ Hi. In which case the concept of
equipartition is obsolete. One example of this is a U(1)-

preserving Dirichlet-Dirichlet factorization {Uð1ÞDD in the free
boson CFT at infinite radius [19].

[63] J. Frohlich, O. Grandjean, A. Recknagel, and V. Schomerus,
Nucl. Phys. B583, 381 (2000).

[64] {ND is the only factorization in the free boson that is
independent of the compactification radius R (Luttinger
liquid parameter K).

[65] There can be completely equipartitioned non-Verma {αβ.
Imagine, for instance, a factorization at 0 < c < 1 consist-
ing of only two families with coinciding multiplicity and a
null vector at the same level N, i.e., νiðqÞ ¼ qhið1 − qNÞ.
Such families satisfy (18) and are nonunitary [36].

[66] T. Hartman, arXiv:1303.6955.
[67] T. Faulkner, arXiv:1303.7221.
[68] H. M. Wiseman and J. A. Vaccaro, Phys. Rev. Lett. 91,

097902 (2003).
[69] H. Barghathi, C. M. Herdman, and A. Del Maestro, Phys.

Rev. Lett. 121, 150501 (2018).
[70] H. Barghathi, E. Casiano-Diaz, and A. Del Maestro, Phys.

Rev. A 100, 022324 (2019).
[71] M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer,

and J. Sirker, Phys. Rev. Lett. 124, 243601 (2020).
[72] M. Kiefer-Emmanouilidis, R. Unanyan, J. Sirker, and M.

Fleischhauer, SciPost Phys. 8, 083 (2020).
[73] K. Monkman and J. Sirker, Phys. Rev. Res. 2, 043191

(2020).
[74] A. Recknagel and V. Schomerus, Boundary Conformal

Field Theory and the Worldsheet Approach to D-Branes,
Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England,
2013), 10.1017/CBO9780511806476.

[75] A. Feiguin, S. Trebst, A. W.W. Ludwig, M. Troyer, A.
Kitaev, Z. Wang, and M. H. Freedman, Phys. Rev. Lett. 98,
160409 (2007).

[76] E. Cornfeld, L. A. Landau, K. Shtengel, and E. Sela, Phys.
Rev. B 99, 115429 (2019).

[77] I. Protopopov, Y. Gefen, and A. Mirlin, Ann. Phys.
(Amsterdam) 385, 287 (2017).

[78] M. R. Gaberdiel and R. Gopakumar, J. Phys. A 46, 214002
(2013).

[79] I. Basile, A. Campoleoni, and J. Raeymaekers, J. High
Energy Phys. 03 (2023) 187.

[80] D. Friedan and A. Konechny, Phys. Rev. Lett. 93, 030402
(2004).

PHYSICAL REVIEW LETTERS 131, 151601 (2023)

151601-7

https://doi.org/10.1088/1751-8121/aa7782
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevLett.108.196402
https://doi.org/10.1103/PhysRevLett.108.196402
https://doi.org/10.1007/s10955-018-2025-x
https://doi.org/10.1007/s10955-018-2025-x
https://doi.org/10.1088/1742-5468/2016/06/064005
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://arXiv.org/abs/2111.06514
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110405
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.151601
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.151601
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.151601
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.151601
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.151601
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.151601
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.151601
https://doi.org/10.1088/1742-5468/2015/04/P04010
https://doi.org/10.1103/PhysRevD.83.124014
https://arXiv.org/abs/1303.0741
https://doi.org/10.1088/1742-5468/aba498
https://doi.org/10.1088/1742-5468/aba498
https://arXiv.org/abs/2009.11383
https://doi.org/10.1088/1742-5468/2016/12/123103
https://doi.org/10.1103/PhysRevLett.67.161
https://doi.org/10.1103/PhysRevLett.67.161
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1016/0550-3213(89)90521-X
https://doi.org/10.1016/S0550-3213(00)00237-6
https://arXiv.org/abs/1303.6955
https://arXiv.org/abs/1303.7221
https://doi.org/10.1103/PhysRevLett.91.097902
https://doi.org/10.1103/PhysRevLett.91.097902
https://doi.org/10.1103/PhysRevLett.121.150501
https://doi.org/10.1103/PhysRevLett.121.150501
https://doi.org/10.1103/PhysRevA.100.022324
https://doi.org/10.1103/PhysRevA.100.022324
https://doi.org/10.1103/PhysRevLett.124.243601
https://doi.org/10.21468/SciPostPhys.8.6.083
https://doi.org/10.1103/PhysRevResearch.2.043191
https://doi.org/10.1103/PhysRevResearch.2.043191
https://doi.org/10.1017/CBO9780511806476
https://doi.org/10.1103/PhysRevLett.98.160409
https://doi.org/10.1103/PhysRevLett.98.160409
https://doi.org/10.1103/PhysRevB.99.115429
https://doi.org/10.1103/PhysRevB.99.115429
https://doi.org/10.1016/j.aop.2017.07.015
https://doi.org/10.1016/j.aop.2017.07.015
https://doi.org/10.1088/1751-8113/46/21/214002
https://doi.org/10.1088/1751-8113/46/21/214002
https://doi.org/10.1007/JHEP03(2023)187
https://doi.org/10.1007/JHEP03(2023)187
https://doi.org/10.1103/PhysRevLett.93.030402
https://doi.org/10.1103/PhysRevLett.93.030402

