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Quantum measurements play a fundamental role in quantum mechanics. Especially, generalized
quantum measurements provide a powerful and versatile tool to extract information from quantum systems.
However, how to realize them on an arbitrary higher-dimensional quantum system remains a challenging
task. Here we propose a simple recipe for the implementation of a general positive-operator valued
measurement (POVM) on a higher-dimensional quantum system via a one-dimensional discrete-time

quantum walk with a two-dimensional coin. Furthermore, using single photons and linear optics, we realize
experimentally a symmetric, informationally complete (SIC) POVM on a three-dimensional system with
high fidelity. As an application, we realize a qutrit state tomography with SIC-POVM and confirm that the
infidelity scaling achieved by the qutrit SIC-POVM is as good as that based on mutually unbiased bases.
Our study paves the way to explore physics and information in higher-dimensional quantum systems and
finds applications in various quantum information processing tasks that rely on generalized quantum

measurements.
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Introduction.—Quantum measurement is the interface
from quantum systems to classical world [1-3]. As the
generalized quantum measurement, positive-operator val-
ued measurement (POVM) offers an efficient method to
acquire information that far surpasses the performance of
von Neuman projective measurement [1]. A typical and
fundamental example is that projective measurement can
only discriminate orthogonal states, while POVM is able to
discriminate nonorthogonal ones [4—13]. Therefore, POVM
is a versatile tool in studying quantum information and
fundamental quantum theory [4,11,14-21]. Physically,
POVMs correspond to projective measurements on a joint
system of the system of interest and an ancilla whose state is
known [22,23]. So far, POVMs on a qubit have been realized
in a number of different physical systems [6,24—40].
However, POVMs on an arbitrary higher-dimensional
quantum system still attract attention.

Among the proposals of qubit POVMs, a feasible and
user-friendly recipe is based on a one-dimensional discrete-
time quantum walk (QW), which was first proposed by
Kurzyfiski and W¢jcik [41] and demonstrated experimen-
tally in photonic systems [39]. Recently, the method has
been generalized to implement POVMs on a qudit via QWs
with a higher-dimensional coin [42]. However, experimen-
tally realizing QWs with a higher-dimensional coin remains
a challenging task.
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Here we propose a simple recipe for the implementation
of POVMs on an arbitrary higher-dimensional quantum
system via the simplest version of QWs, i.e., a one-
dimensional QW with just a two-dimensional coin. Our
method releases the requirement of a higher-dimensional
coin and furthermore is general and efficient, i.e., an
arbitrary qudit POVM with m rank-1 elements can be
implemented via a (2m — 3)-step QW. It is general to
consider rank-1 elements as an arbitrary higher-rank
POVM element can be obtained from rank-1 elements
with two procedures of mixing and relabeling [43-48].
Using single photons and linear optics, we realize exper-
imentally a symmetric, informationally complete (SIC)
POVM on a qutrit with high fidelity. As an application,
we realize a qutrit state tomography and confirm that
the infidelity scaling achieved by the qutrit SIC-POVM
[49-56] is as good as that based on mutually unbiased
bases (MUBs) [57-64].

Relation between POVM and QWs.—Consider {E,;}
being a POVM with each element E;, which is a positive
semi-definite Hermitian operator, E;>0. The probability of
measuring the jth POVM element on a state p is given by
Tr(E;p). A complete set of measurement operators has the
resolution of identity, i.e., ) ; E; = 1 is satisfied. Without
loss of generality, we consider the POVM with a complete
set of m rank-1 elements as

© 2023 American Physical Society
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Ej=pjl¢;) )l j=1....m. (1)
In this case, we have m > d and the equality holds if and
only if the POVM degenerates to a projective measurement,
where d is the dimension of the system.

For one-dimensional QWs [65,66], the Hilbert space of
the walker-coin H” ® H¢ is spanned by the basis |x, ¢) =
|x) ® |¢) with position x€Z and coin ¢==+1. An
evolution operator U, = SC, for the rth step includes a
coin operation

C = iec (2)

xXeZ

followed by a conditional shift operation

S= Y tobl®le)el (3)

x€Z,c=*1

A projective measurement P = |x, ¢)(x, ¢| on the evolved
state |y,) = [['_, Uilyo) of a t-step QW is equivalent
to the measurement P’ = |y;“)(y;“| on the initial state
o), where |y) = [['_, Ul|x, c). When the initial state
is confined to finite positions x'=0,....,d — 1, the
probability of the projective measurement P on |y,)
is also equivalent to that of measuring the POVM
element E = pf"'|(;§“><_f"| on |yo) [22,23], Where
P =g 1are V/Vpit, and e

S e (L e >|x,c> is an orthogonal pr0]ec—
tion of |y;°) to a subspace. That is, the probability satisfies

P(x,c.t) = (wilPly,) = (wolP'lwo) = (wolElwo).  (4)

Generation of arbitrary rank-1 POVM elements on
qudit.—To realize a d-dimensional POVM with a complete
set of m rank-1 elements as Eq. (1), our idea is iteratively
implementing unitary operations followed by projective
measurements. The main task of our method is to determine
the parameters in the operations and measurements. In
principle, the dimension of each unitary operation is d.
After the first j — 1 iterations, elements Ei,...,E;_; are

J
implemented, the support of the system after the (j — 1)th

E j’) The
effective dimension of the system after the (j— 1)th

iteration is equal to the rank of the sum of elements from
E;to E,

iteration is supp(1 — Zj,_:ll E;) = supp(

rj El’&ﬂk(ZEj/>, (5)
=i

and r; = rank(1) = d and r,, = rank(E,,) = 1.
Moreover, two neighboring ranks satisfy either r; = r;
orrj =rj + 1. Whenr; =r;;; + 1, there must be a state

psatlsfymgpesupp( - E;) and p & supp( ;’,’:HlEj«).

For p, we have Tr(E;p) #0 and Tr(3_7_;,, Eyp) =0,

which can be used as a signature of the decreasmg of the
rank. Now we are ready to introduce our algorithm for
realizing POVMs.

First, we recall that the rank-1 elements are of the form in
Eq. (1) and encode a d-dimensional system into n = [d/2]
positions of the walker and |c) = | £ 1) into coin states.
If d is even, we use the qudit basis ,¢) with
x=13,...,2n—1.If d is odd, we use [2n —1,+1) and
|x,c) with x = 1,3, ...,2n — 3. The QW network is built
by starting with a blank grid, and putting the coin operation
C7 at position x in step ¢. In the following, we show the
algorithm to obtain specific Cy, x, and #: (S1) Initiate the
QW at position x = 1,3,...,2n — 1 with the coin state,
corresponding to the qudit state to be measured. (S2) Apply
coin operation o, = (%! at position x = 0 in all steps t and
at positionx =dinstep r<d—1.(S3) Forj = 1,. -1
(m is the number of the elements): (a) For k = 1 T
apply the coin operation R;; at position x =k in step
t=k-+2j—2. (b) Measure the walker at position x =

riy1 + 1 after step £ = r; ;1 +2j — 2, which is equivalent

to the measurement of the POVM element E;. (S4) Apply

the coin operations as 1 = (;) elsewhere. (SS) Measure

the walker at position x = 0 after step = 2m — 3, which is
equivalent to the measurement of the POVM element E,,.

The position and steps for operations R; are illustrated
in Fig. 1(a). In the Supplemental Material [67], we prove
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FIG. 1. (a) lustration of the algorithm for the generation of an
arbitrary rank-1 POVM on a qudit. Coin operations R;; for
k=1, ...,r;. (b) Realization of a qutrit SIC-POVM via a 15-step
QW. The coin qubit and the walker in positions are taken as a
qutrit of interest, whereas the other positions of the walker act as
ancillae. Position-dependent coin operations are specified based
on the algorithm. Some coins at certain positions are not shown as
those positions are not reachable by a QW from the used initial
state. The 9 detectors E; correspond to the 9 outcomes of the
qutrit SIC-POVM.
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that the operators can always be chosen in such a way as to
implement any desired POVM.

A SIC-POVM on a qutrit—To demonstrate our algo-
rithm, we consider a SIC-POVM [49-56] on a qutrit as an
example. There are m = d? elements of a SIC-POVM on a
d-dimensional system, E; = |¢;)(¢;|/d with equal pair-
wise overlaps |<¢,,\¢//>|2 (dyjr+1)/(d+1). For a
qutrit system (d = 3), all SIC-POVMs are covariant with
the Heisenberg-Weyl group, which can be generated by the
shift operator X = |0)(2| + [1)(0| + |2)(1| and the phase
operator Z = >_7_ ¢*7/3) |k} (k|. Without loss of general-
ity, we choose
4;) =XPZ%s).  p.q=0.,12, j=3p+q+1. (6)
where |¢;) = (|1) —[2))/v/2 denotes the fiducial state.
According to Eq. (5), we have ri =r, =--- =rg =3,
7'7:}"8:2, r9:1.

To realize such a qutrit SIC-POVM via QWs, we encode
the system into n = 2 positions of the walker. That is, the
qutrit basis {]0),]1),]2)} is encoded into the walker-coin
states {|1,-1),|1,+1), ) }. Based on the algorithm,
the coin operation o, is taken at position x = 0 in all steps
and at position x = 3 in steps ¢ = 1, 2. Let us consider the
POVM element E;_, first. We have r; = r, =3 for j = 1.
Then the coin operations are R;_; ;—; at position x = 1 in
step 1 =1, R;_ ;—, at position x =2 in step ¢ = 2, and
R;_| x—3 at position x = 3 in step ¢ = 3, respectively. The
walker at position x = 4 is measured after t = 3 and the
probability is equivalent to that of POVM element E; on the
initial state. The particular forms of the coin operations
Ry, Ry,, and R,; are specified in the Supplemental
Material [67]. The other elements can be realized similarly
based on the algorithm.

As illustrated in Fig. 1(b), the coin operations at the
positions x = 1 and x = 3 in the first step are R ; and o,
respectively. According to our algorithm, for the SIC-
POVM on a qutrit in Eq. (6), we have R;; =1 [67].
Therefore, the first step works as a permutation of the basis
that can be combined with the initial state preparation. Then
the basis states of the qutrit are encoded into the walker-
0,-1), ) —1) instead. With these
choices, the SIC-POVM can be realized via a 14-step QW.

Experimental realization—The experimental setup is
illustrated in Fig. 2. The coin and position states of the
walker are encoded into the polarizations and spatial modes
of the heralded single photon, respectively.

The position-dependent coin operations C7 (including o,
and R; ;) are specified by the algorithm and can be realized
by wave plates placed in the specific spatial modes. The
conditional position shift operation is realized by a cas-
caded interferometric network involving the birefringent
calcite beam displacers (BDs), whose optical axes are cut
so that the vertically polarized photons are transmitted
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] M e
HoQs Rie Nge N\ 2Re i
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E{ \Eﬁ\—‘
ﬂE
2 g
Trigger 16 {E

ﬂ State Preparation POVM Measurements

FIG. 2. Schematic of the experimental setup. Heralded single
photons are generated via type-I spontaneous parametric down-
conversion and prepared in 9 different qutrit states vis a beam
displacer (BD) and wave plates (H;, Q;, H,, and Q,). Combined
with the first coin operation, the basis states are encoded by the
coin and the walker in positions 0 and 2. Then the single photons
undergo a POVM device based on a QW with a two-dimensional
coin, which includes coin operations realized by wave plates and
conditional shift operations realized by BDs. Finally, photons are
detected by avalanche photodiodes (APDs) via a coincidence
with the trigger photons. Each of the 9 APDs corresponds to an
outcome of a POVM element.

directly and the horizontally polarized photons are shifted
to the adjacent spatial mode, respectively. The photons are
detected by avalanche photodiodes (APDs) via a coinci-
dence with the trigger photons in a 3 ns time window. Total
coincidence counts are about 12000 over a collection time
of 8 s. There are 9 output ports, each of which corresponds
to an outcome of a POVM element.

To verify the experimental implementation of the qutrit
SIC-POVM, we reconstruct the matrix forms of the POVM
elements via quantum measurement tomography. First, we
prepare the 9 basis states as input states

0 0 | 0
= 1 , = 0 s = — 1 ,
lp1) |p2) lp3) /2 .
0 1 i
0 1 i
o)== 1], en={0]. lo=—=| -1
Py) = 3 ’ Ps5) = ’ P 7\/5 )
1 0
1 : 1 : 1 !
=—10], =—10], — | -1
i i

For each input state, we obtain the probability distribution
P(|lg;)) =N/ > k-1 o Ny after the input state goes
through the setup of POVM, where N, is the number
of the photons being detected at APD E; as illustrated in
Fig. 2. The probability distributions of the 9 basis
states are shown in Fig. 3. With the probability distribu-
tions, we can reconstruct the matrix form of each
POVM element via the maximum likelihood method
[67,74]. The results are shown in Fig. 4. We report a
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FIG. 3. Probabilities of the photons being detected at each

APD after the POVM performed on the basis state |¢;) with
i=1,...,9. Solid and hollow bars represent the experimental
results and their theoretical predictions, respectively. Error bars
indicate the statistical uncertainty, obtained via error propagation
assuming Poissonian statistics.

figure of merit to characterize aspects of our exper-
imental realization of the qutrit SIC-POVM—fidelity

F=(1/d%) ( " /Fiy/Tr(ES?)Tr(ET) ) , where F;
(Tr {\/1/ [ES®/Te(ES®)|[ED/Te(EP)] /[ ;"P/Tr(E‘]‘fXP)]]> :

For overall 9 input states, we observe F = 0.949 4 0.002.
Here we compare our method with some previous
approaches [75-79] for implementing POVMs. Realizing

a POVM with d? outcomes on a d-dimensional quantum
system, the standard realization via the Neumark extension
[75-77] requires a d*> x d’> unitary transform and
d*(d?> — 1)/2 operations between pairs of basis states.
The realization using just a single extra degree of
freedom proposed by Wang and Ying in [78] requires a
(d + 1) x (d + 1) unitary transform and d*(d*> — 1) /2 oper-
ations between pairs of basis states. A binary search tree for
POVM proposed by Andersson and Oi [79] requires a
2d x 2d transform and [log, d*]d(2d — 1) operations. By
using our method, a d x d transform and [d/2](2d* - 3)
operations are needed [67]. Thus, our method shows poten-
tial advantages compared to the previous ones [75-79].

An application of SIC-POVMs.—As an application, we
realize qutrit state tomography with SIC-POVM. We
choose different qutrit states p. After the SIC-POVM is
performed, the probabilities are estimated from the frequen-
cies of the repeated measurements. Then the states
can be reconstructed via the maximum likelihood method
[67]. The quantum infidelity 1 — F' = 1 — Tr(//pp’ \//_))2
between a state p and its estimate p’ can be used to quantify
the accuracy of a measurement. Figure 5 shows the
quantum infidelity about the dependence on the number
of copies of the state of interest N, which is equivalent to
the number of photons. We choose three different qutrit
states as examples and fit both experimental and simulated
data to power laws of the form SN79, and find ey =
0.886 = 0.012 (for experiment data) and g, = 1.009 &+
0.011 (for simulated data) for |@;), gex, = 0.402 4 0.052
and g, = 0.538 £0.020 for [@y), and gy, = 0.407 &
0.019 and g, = 0.508 + 0.021 for |¢g), respectively. The
infidelity scaling achieved by the qutrit SIC-POVM is state
dependent.

FIG. 4. Matrix forms of the elements E; of a qutrit SIC-POVM. Real and imaginary parts of the matrix forms of the 9 reconstructed
POVM elements are plotted by solid bars while hollow bars represent their theoretical predictions.
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FIG.5. Infidelity versus N for two different measure methods: a
qutrit SIC-POVM and MUBs. We choose three different states:
|@1), |@p4), and |gpg), for examples. Both experimental and
numerical results for SIC-POVM and numerical results for MUBs
are shown for comparison. Experimental and numerical results
are both shown. Numerical results are obtained by Monte Carlo
simulations. Each data point is the average of 1000 repetitions.

For comparison, we also show the numerical results
achieved by the measurement of the full set of MUBs
[57-64] for qutrit states. We fit the simulated MUB data
to power laws of the form pN79, and obtain
g = 0.998 +0.008, 0.570 = 0.017, 0.570 £ 0.022 for the
states |@), |@4) and |¢pg), respectively. As illustrated in
Fig. 5, the infidelity scaling achieved by the qutrit
SIC-POVM is as good as that by MUBs.

Conclusion.—We present a simple proposal for imple-
menting an arbitrary higher-dimensional POVM by the
simplest version of QWs, i.e., a QW with just a two-
dimensional coin. Our proposal releases the requirement of
a higher-dimensional coin and furthermore is general and
efficient. All coin operations can be determined algorithmi-
cally. Using single photons and linear optics, we realize
experimentally a SIC-POVM on a qutrit with high fidelity.
The results prove that the infidelity scaling achieved by the
qutrit SIC-POVM is as good as that by MUBs. Our study
paves the way to explore physics and information in higher-
dimensional quantum systems and will be applied in
various quantum information processing tasks that rely
on generalized quantum measurements.
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