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Diffusion noise represents a major constraint to successful liquid state nano-NMR spectroscopy. Using
the Fisher information as a faithful measure, we theoretically calculate and experimentally show that phase
sensitive protocols are superior in most experimental scenarios, as they maximize information extraction
from correlations in the sample. We derive the optimal experimental parameters for quantum heterodyne
detection (Qdyne) and present the most accurate statistically polarized nano-NMR Qdyne detection
experiments to date, leading the way to resolve chemical shifts and J couplings at the nanoscale.
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Phase sensitive protocols, such as quantum heterodyne
detection (Qdyne), optimize the precision of frequency
estimation from classical signals in noisy environments
by sequentially sampling the probe at periodic intervals,
thereby overcoming the limited coherence time of the
quantum sensor [1–3]. Then, resolving arbitrarily close
frequencies should be possible by increasing the total
measurement time [4,5]. These results heralded the pos-
sibility of performing effective nuclear magnetic resonance
at the nanoscale (nano-NMR), on statistically polarized
liquid samples, with quantum probes; for example, single
nitrogen-vacancy (NV) centers in diamond [6–10].
However, despite the early promising results, these proto-
cols have been scarcely applied in experiments with chemi-
cally or pharmacologically relevant samples [3,11–16].
The foremost difficulty explaining this reluctance is the
necessary trade-off between sensor-sample interaction
strength and short diffusion time, typical of statistically
polarized samples. This combines with a seemingly chal-
lenging data acquisition and postprocessing, and the exist-
ence of more amenable alternatives such as correlation
spectroscopy (CS) [6,17].
The archetypal color defects used for single NV nano-

NMR are located at depths d a few nm below the diamond
surface, where they interact via dipole-dipole coupling with
nuclei from a sample located on top of the diamond surface.
With the interaction strength decreasing as ∼d−3, only the
closest nuclei contribute significantly to the total inter-
action. Then, for shallow NV centers, the statistical polari-
zation of the nuclei is significant enough to overcome any
thermal averaging [6,18–20]. These statistically pola-
rized nuclei generate a time-correlated magnetic field
BðtÞ ¼ P

i aiðtÞ cosðωitÞ þ biðtÞ sinðωitÞ, that can contain

oscillations at several (e.g., Larmor) frequencies ωi. BðtÞ
generates a detectable change on the NV center electron
spin state, thereby providing valuable information about
the sample. However, as molecules diffuse, the coup-
lings between nuclei and NV center—the amplitudes
faðtÞ; bðtÞg—fluctuate. This is typically modeled as a
random process normally distributed around zero and with
finite correlation time TD ¼ d2=D, with D the diffusion
coefficient of the fluid [21]. It is commonly accepted that,
when the diffusion time TD is shorter than an oscillation
period of BðtÞ, one cannot accumulate enough information
per measurement to resolve the respective spectral line.
Yet recently, it was demonstrated that correlations between
diffusing nuclei survive longer than TD, allowing us to
significantly extend the data acquisition time and, conse-
quently, the precision of estimation of the target frequency
[22–25].
In this Letter, we determine the optimal experimental

parameters for two state-of-the-art quantum sensing pro-
tocols, aiming to get the maximum information for spectral
reconstruction. We combine this strong theoretical foun-
dation with robust data analysis, allowing us to present the
most accurate statistically polarized nano-NMR Qdyne
experiments to date. We compare them to ideal, error-free
CS experiments through the amount of information that
they provide about a target signal frequency, and unam-
biguously establish that Qdyne has a superior performance.
These results open new possibilities for high precision
quantum sensing, broadening the scope for implementing
Qdyne in liquid nano-NMR, conceivably allowing us to
resolve chemical shifts and J coupling at the nanoscale.
Additionally, we demonstrate a universal comparison
methodology for sensing protocols and experimental
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platforms that can potentially become a valuable tool for
optimizing any quantum sensing experiment.
Quantifying information.—We consider an NV center

interacting with the magnetic field BðtÞ generated by a
statistically polarized sample of diffusing nuclei. Assuming
that any other external noise is strongly suppressed by
either dynamical decoupling (DD) [26–32] or careful
experimental design, the main limiting factor to spectral
resolution is the finite correlation time, TD, of BðtÞ. An
initial superposition state of the NV center interacting with
BðtÞ, accumulates a phase Φ½BðtÞ�. Tracking the evolution
of such state permits inferring the parameters describing
BðtÞ using suitable postprocessing.
Experimentally, the mean squared error (MSE) Δδ

quantifies the accuracy in estimating a parameter; e.g.,
the small (angular) frequency offset δ, defined as the
difference between the nuclear spin Larmor frequency
and the sampling frequency [33]. The Cramér-Rao bound
states that the MSE must always be greater than the inverse
Fisher information about the parameter, Δδ ≥ 1=Iδ [43,44],
establishing a connection between theory and experiments,
and providing a direct route to improve experiments
through theoretical modeling. For a single measurement

iδ ¼ E

��
d log½LðδÞ�

dδ

�
2
�
; ð1Þ

with LðδÞ the likelihood of finding the NV in a given state.
After N measurements in an experiment of duration T, the
total information is Iδ ¼

P
N iδ. We aim to theoretically

maximize Iδ for a given protocol, seeking the best possible
experimental Δδ.
Here, we compare Qdyne with one of the most advanced

sensing protocols: correlation spectroscopy [6,17]. We
benchmark the achievable Iδ for each protocol, in the
scenario of a magnetic signal with a limited coherence time
originating from a statistically polarized sample, by defin-
ing the ratio

Rδ ¼ IQdyneδ =ICSδ ; ð2Þ

between the Fisher information of Qdyne IQdyneδ and CS
ICSδ . In what follows, we theoretically calculate Iδ for each
protocol showing that, in most experimental scenarios,
Rδ > 1. Then, we compare it to Δδ obtained from sta-
tistically polarized nano-NMR experiments and demon-
strate strong accord with the theoretical modeling.
Correlation spectroscopy.—Standard quantum spectros-

copy with NV centers monitor their fluorescence response,
which is modulated by the accumulated phase Φ½BðtÞ� in
each measurement. Then, one infers information about BðtÞ
by averaging the results of all measurements. Since BðtÞ is
time correlated, consecutive phase acquisition periods are
also correlated, and encode information about BðtÞ. CS
builds upon this notion by combining two phase acquisition

periods of equal duration τ separated by a waiting time τw
[see Fig. 1(a)]. The phase accumulated during the first
period, is stored as population difference (transferred to a
“memory” qubit) during τw [17], imposing τw ≤ T1 (Tm),
the latter being the spin-lattice (memory qubit) relaxation
time. Varying τw yields a signal that corresponds to
the covariance of the noise affecting the probe, i.e.,
covhΦ½Bðt0Þ�Φ½Bðt0 þ tÞ�i ¼ Φ2

rms cosðδtÞCðt=TDÞ, where
t ¼ τ þ τw, Φrms ∝ Brms the root-mean-squared field of
BðtÞ, and Cðt=TDÞ is the envelope that describes the decay
of correlations due to noise. For diffusion, Cðt=TD ≪ 1Þ ∼
expð−6t=TDÞ while Cðt=TD ≫ 1Þ ∼ t−3=2 [22].
In each readout, the expected photon number is

p ¼ ηþ chsinðΦ0Þ sinðΦtÞi=2, with η ¼ ðη0 þ η1Þ=2 the
average photon number (η0 and η1 are the expected
photon numbers for readout of NV spin states j0i and
j1i, respectively), and c ¼ η0 − η1 the contrast. Averaging
over realizations of BðtÞ yields the relation between the
expected photon number and the autocorrelation,
p ¼ ηþ cΦ2

rms cosðδtÞCðt=TDÞ=2. Using Eq. (1) with p

FIG. 1. (a) Depiction of Qdyne (Qd, upper part) and correlation
spectroscopy (CS, lower part) experimental procedures for
NV-NMR on a fluid sample with diffusion time TD. For Qdyne,
the measurement sequence is repeated at fixed time intervals τ̃.
During each overhead time τo the NV is interrogated about the
phase acquired during the time τ and repolarized for a new
measurement. The recorded photons are postselected to obtain a
measurement vector whose autocorrelation resembles the covari-
ance of the noise model. In CS, the autocorrelation of the sample
is probed directly by changing the waiting τw between two DD
blocks. Data analysis using maximum likelihood estimation
produces a histogram of estimators which, for low frequencies,
is narrower for Qdyne than for CS. (b) Exact Fisher information
Iδ for both CS [Eq. (3)] and Qdyne [Eq. (4)] with total
measurement time T ¼ 1 hour and T ¼ 100 hours. The shad-
owed area marks the frequencies for which the information is
insufficient for successful estimation, set at Δδ < δ2=4, as per the
Rayleigh criterion (RC). For all Iδ Φrms ¼ 1, with TD ¼ 100 μs,
η0 ¼ 0.04, η1 ¼ 0.03, and for Qdyne τ̃ ¼ 25 μs.
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we get iCSδ ¼ ½c2=ð4ηþ c2Þ�Φ4
rmst2sin2ðδtÞC2ðt=TDÞ. To

calculate Iδ, we transform the measurements sum into an
integral and take the low frequency limit ðδ=2πÞ < 1=TD
[33]. Then

ICSδ ¼ TTD

Z
1

0

dt iCSδ ðtÞ ≈ c2Φ4
rmsδ

2T3
DT

4ηþ c2
; ð3Þ

where we assume T1ðTmÞ ≫ TD and ignore its effect.
The relation between δ, TD, and T defines the ability
to estimate δ. If ðδ=2πÞTD > 1, a complete oscillation
occurs before the signal is strongly suppressed, and
estimating the frequency poses no problem. Conversely,
for ðδ=2πÞTD < 1, limδ→0 ICSδ ðTÞ ¼ 0. This is illustrated in
Fig. 1(b), where we calculate ICSδ ðTÞ using the exact
analytical formula, for two different total experiment times
T, and compare it against the maximum MSE that allows
for frequency estimation, defined, following the Rayleigh
criterion for linewidth separation in optics, as Δδ < δ2=4
[45–47]. We observe that Iδ vanishes with δ faster than it
grows with T. Note that both the oscillations and the
relative flatness appearing at ðδ=2πÞTD⪆1 result from
using the exact ICSδ rather than the approximate expression
Eq. (3).
Qdyne.—Phase sensitive measurements consist of

(phase-dependent) signal accumulation periods τ followed
by qubit interrogation and repolarization (for overhead time
τo) for the next measurement, in a process repeated
continuously with periodic separation time τ̃ ¼ τ þ τo, as
shown in Fig. 1(a) (see, also, [33] for a detailed description
of Qdyne implementation). Following each interrogation,
the expected photon number is p ¼ ηþ chsinðΦtÞi=2.
A sequence of such equally spaced measurements
directly reflects the time evolution of BðtÞ. To better
understand Qdyne, we use polar coordinates and write
BðtÞ ¼ ΩðtÞ cos ½δtþ φðtÞ�, with ΩðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðtÞ2 þ bðtÞ2

p
and tan ½φðtÞ� ¼ bðtÞ=aðtÞ. Then, when TD ≫ 1=δ, τ̃ ≪
TD and φðtÞ remains coherent for a sufficiently large
number of measurements, allowing us to perform maxi-
mum likelihood estimation (MLE) over a small parameter
space. Increasing T permits resolving arbitrarily small
frequencies [4].
When TD < 1=δ, φðtÞ changes faster than the oscillation

period 2π=δ. Then, each new measurement requires esti-
mating new parameters, and MLE becomes computation-
ally intractable. In this scenario, the solution is to calculate
the autocorrelation of the measured signal during post-
processing [see Fig. 1(a)]. This treatment reduces the
parameter space by having a decaying signal similar to
that of CS. Then, the signal parameters can be estimated
through, e.g., least squares algorithms. The advantage of
Qdyne is that, by measuring sequentially, any two points in
a measurement vector are correlated, instead of having just
pairwise correlation, as in CS. For the power-law signals
occurring in nanoscale diffusion [22,25], this means that

much more information is contained in the Qdyne auto-
correlation. The relevant probability is that of obtaining a
pair of correlated photons between any two measure-
ments hp0pjτ̃i, j being an integer, yielding iQdyneδ ¼
½c4=ð4ηþ c2Þ2�Φ4

rmst2 cosðδtÞC2ðt=TDÞ. We obtain the
total information by integrating over t, with an added
factor accounting for all correlated pairs of measure-
ments [33]. Using normalized time z ¼ t=TD we get

IQdyneδ ¼ T4
D

τ̃2

Z T
TD

0

dziQdyneδ

�
T
TD

− z

�
≈
c4Φ4

rmsT3
DT log δT

ð4ηþ c2Þ2τ̃2 ;

ð4Þ

where we consider ðδ=2πÞTD < 1 and ðδ=2πÞT > 1.
Equation (4) shows that, with Qdyne, spectral resolution
no longer depends on the relation between TD and δ, but
solely on T, as illustrated in Fig. 1. There, only when
ðδ=2πÞT < 1 does IQdyneδ → 0.
Equation (4) has several implications: Qdyne requires

a high number of measurements, and therefore, a
small τo ¼ τ̃ − τ, and two measurements per correlation
(whereas CS requires one), which translates to an extra
½c2=ð4ηþ c2Þ�, penalizing Qdyne due to the typically low
average number of photons detected per measurement.
Conversely, a small ðδ=2πÞTD favors Qdyne as compared
to CS. Thus, increasing the measurement time T permits
estimating much smaller frequencies. The information
ratio, Eq. (2), in the limit δ=2π < 1=TD reads

Rδ ¼
IQdyneδ

ICSδ
≈

c2

4ηþ c2
logðδTÞ
δ2τ̃2

: ð5Þ

Next, we theoretically explore the dependence of Rδ on
different parameters and compare it to experimental results.
Experimental results and data analysis.—To test our

theoretical model, we perform nano-NMR measurements
on statistically polarized samples with single shallow NV
centers. For both protocols, we record the signal coming
from hydrogen nuclei in an immersion oil (Fluka 10976)
with a Larmor frequency ≈2 MHz (see Refs. [25,33] for
further details).
Data postprocessing is important for successful nano-

NMR, especially when ðδ=2πÞTD < 1. Minimizing esti-
mation errors requires using efficient estimators such as
MLE [48] that can saturate the Cramér-Rao bound.
Contrary to that, the typically employed Fourier transform
offers sufficient statistics for parameter estimation only for
signals with well separated frequencies and high signal-to-
noise ratio. Moreover, estimating frequencies from Fourier
peaks is sub-optimal [49], explaining its failure in the
challenging nano-NMR regimes, which feature highly
fluctuating coupling parameters and for frequency split-
tings that are smaller than 1=TD.
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Our goal is to optimize Δδ and compare it to the
theoretical calculations of Iδ. To have the most faithful
comparison, we need MLE. However, as noted above,
Qdyne measurement vectors become computationally
intractable for MLE when ðδ=2πÞTD < 1. Rather, we
resort to fitting the autocorrelation of the data to
Φ2

rms cosðδtÞCðt=TDÞ with parameters fΦrms; δ; TDg using
a simple nonlinear least squares algorithm, which is
equivalent to MLE if the variables to be fitted have
normally distributed errors [33,50], which we can assume.
Estimating the MSE from a single fit to the autocorrelation
can be misleading, especially in the hardly resolvable
regime, due to outliers, a highly nonconcave parameter
space, and because a good initial estimation of the MSE is
required. Instead, we calculate the root MSE (rmse) from a
distribution of frequency estimators, obtained by fitting
smaller blocks of the data. These are calculated by slicing
the measurement vector onto 15 minute (∼107 measure-
ments) pieces and then combining them in groups
of 20. Thus, we achieve a balance between reducing noise
and minimizing statistical errors. We benchmark the
acquired squared inverse of the rmse against Iδ. A dem-
onstration of the difference in data analysis procedures is
shown in Fig. 2(a), where we display the probability
histogram of δ estimators, with rmse ¼ 458 Hz, together
with the Fourier transform of the autocorrelation of the
entire measurement vector, with rmse ¼ FWHM=2 ¼
602 Hz [49,51]. To the best of our knowledge, the former
represents the most precise statistically polarized Qdyne
result to date [1].
In correlation spectroscopy, each experiment yields a

single autocorrelation of Φ½BðtÞ�, which we fit with a
nonlinear least squares algorithm. We evaluate the data
100 times to the model with random initial parameters and

take the best fit, in terms of R2. The frequency estimator
and its rmse are obtained from the parameter estimates from
the best model.
To obtain Rδ, we calculate, for each experiment, the

theoretical Iδ for the alternative measurement protocol
using the same parameters as in the experiment. We resort
to this procedure given the difficulty of performing iden-
tical experiments with both protocols. This procedure
excludes possible error sources present in the experiments,
which results in a Rδ biased toward the theoretical
calculation, in which these same errors are excluded.
This accounts, in part, for not saturating the Cramér-Rao
bound [33].
Figures 2(b) and 2(c) show the experimental results for

Rδ over a theoretical background calculated exactly from
the integrals in Eqs. (3) and (4), fixing all the parameters
but two. This poses a problem when showing together
theory and experiment, as different experiments have more
than two different parameters. We solve the issue by scaling
the experimental results according to the fixed parameters
chosen for the theory background. This does not alter the
relation between protocols (the experimental Rδ still
reflects the best protocol for these parameters), and permits
showing the optimal parameter regions for each protocol
while at the same time demonstrating correspondence
between theory and experiments. In each figure, we display
the obtained ratio with the corresponding experimental
result as filled shapes in the parameter space, while empty
shapes represent full theoretical expectation. There is a
small deviation between the full theoretical expectation and
the ratio between theory and experiment. The similarity
between the deviations for CS and Qdyne experiments
show that both experimental setups are subject to similar,
not-accounted-for, errors [33]. This represents a strong

FIG. 2. Probability histogram of frequency estimators from several autocorrelation slices of a Qdyne (Qd) experiment and the Fourier
transform of the full autocorrelation in (a). In (b) and (c), exact information ratio from Eq. (2) in logarithmic scale in the background.
Ratio between the information obtained experimentally and the ideal information for the same parameters with the alternative protocol.
Empty shapes represent the theoretical expectation for Rδ while full shapes show the experimental result. Thick dashed lines show
reference Rδ. In (b), T ¼ 100 hours, τ̃ ¼ 40 μs, and TD ¼ 50 μs, while for (c) ðδ=2πÞTD ¼ 1, with constant overhead time τo ¼ 2.1 μs
[2]. Note that we use relative contrast defined as ðη0 − η1Þ=η0, for which purpose we scale Eqs. (3) and (4) appropriately, and we fix it to
25% (η0 ¼ 0.04, η1 ¼ 0.03) in (c). The legend and color bar in (c) apply to (b) as well.

PHYSICAL REVIEW LETTERS 131, 150801 (2023)

150801-4



validation of our theoretical modeling and shows that
calculating Iδ is a mathematically consistent procedure
for experimental optimization.
The main challenge for statistically polarized nano-NMR

is to resolve spectral lines whose frequency difference is
smaller than the inverse characteristic time 1=TD. In
Fig. 2(b), we compare the performance of Qdyne and
CS according to the relation between the target frequency
and TD. For small δ, the superior ability of Qdyne to
capitalize on the long-lived power-law correlations means
that it is the protocol of choice. Considering a reasonable
T ¼ 100 hours experiment, even at poor contrast, it proves
superior to CS. A reduction in the total measurement time
to T ¼ 1 hour does not significantly change the theoretical
superiority of Qdyne, as observed in Fig. 1(b). We note that
long experimental times may be challenging for some
biological applications. They can be further reduced by
improving photon collection efficiency through engineer-
ing the diamond geometry [52–55], optimizing the sampled
times [33], or through data postprocessing using machine
learning [56]. When ðδ=2πÞTD > 1, the influence of the
total measurement time diminishes, and the contrast gains
importance, with CS preferred at poor contrast. However,
typical experiments with single NV centers easily feature
relative contrasts > 20% (rather, in excess of 30%), for
which Qdyne performs better. To experimentally demon-
strate that at low contrast Rδ < 1, we have artificially
altered the contrast during the postprocessing of the Qdyne
data by choosing the photons from different lengths of the
readout window [33] [triangles in Fig. 2(b)].
A crucial factor when setting up a nano-NMR

experiment is thatΦrms ≲ 1 for optimal information acquis-
ition [23,33]. But Φrms ∝ Brmsτ, where the Brms is given
by the sample. Then, τ is relatively fixed by said
condition [33]. For CS the effect is negligible, but for
Qdyne, whose strategy is to measure at a fast rate
to accumulate correlations, longer sequence times τ̃

negatively affect IQdyneδ [note the 1=τ̃2 factor in Eq. (4)].
In Fig. 2(c), we explore the influence of τ̃ on the
performance of Qdyne. For longer TD, more information
can be sampled with Qdyne than with CS, even for larger τ̃.
This is reflected by the lines of constant Rδ with approxi-
mately constant slope. Conversely, short diffusion times,
resulting from very shallow NV centers, favor CS. But this
is usually compensated by the shorter measurement times
for NVs at low depth, resulting in Qdyne being superior for
most of the parameter range. We note that the total
information could be insufficient for parameter estimation
for very low TD, regardless of the protocol, as demonstrated
in Fig. 1.
Conclusions.—Diffusion noise poses a major challenge

for liquid nano-NMR, and requires refining the experi-
mental design and data analysis for maximal information
extraction. Here, we theoretically show and experimentally
demonstrate that phase-sensitive, sequential measurements,

such as Qdyne, combined with maximum likelihood
estimation, can significantly enhance frequency estimation
precision. We apply them in statistically polarized samples
and compare with other advanced techniques such as
correlation spectroscopy. We present a systematic pro-
cedure, based on the Fisher information, that allows us
to both compare the protocols and optimize the sensing
experiments. Our work is applicable to a wide variety of
different platforms by changing the respective parameters
to reflect the particulars of the experiment. Accordingly, we
managed to perform the most accurate Qdyne experiments
in liquid nano-NMR to date, providing a recipe toward
executing efficient single NV nano-NMR with samples of
biochemical importance and resolving chemical shifts or
measuring J couplings.
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