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We propose a simple method for simulating a general class of nonunitary dynamics as a linear
combination of Hamiltonian simulation (LCHS) problems. LCHS does not rely on converting the problem
into a dilated linear system problem or on the spectral mapping theorem. The latter is the mathematical
foundation of many quantum algorithms for solving a wide variety of tasks involving nonunitary processes,
such as the quantum singular value transformation. The LCHS method can achieve optimal cost in terms of
state preparation. We also demonstrate an application for open quantum dynamics simulation using the
complex absorbing potential method with near-optimal dependence on all parameters.
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Introduction.—Fault-tolerant quantum computers are
expected to excel in simulating unitary dynamics, such as
the dynamics of a quantum state under a Hamiltonian. Most
applications in scientific and engineering computations
involve nonunitary dynamics and processes. Therefore,
efficient quantum algorithms are the key for unlocking
the full potential of quantum computers to achieve compa-
rable speedup in these general tasks. Quantum phase
estimation (QPE) [1,2] is the first algorithm to bridge this
gap. QPE stores the eigenvalues of the Hamiltonian in an
ancilla quantum register, and can be used to solve a wide
range of problems, including amplitude estimation [3],
linear systems [4], and differential equations [5,6]. There
have been two significant improvements over QPE-based
methods. The first is linear combination of unitaries (LCU)
[7], which provides an exponential improvement in preci-
sion for tasks such as the Hamiltonian simulations [8,9] and
linear systems [10]. Here the exponential improvement
refers to the cost of preparing a quantum state in a register,
which also directly translates into a polynomial improve-
ment in precision when the final measurement cost is taken
into account. The second is quantum signal processing
(QSP) [11] and its generalization, including quantum

singular value transformation (QSVT) [12] and quantum
eigenvalue transformation of unitary matrices [13]. Compa-
red to LCU, QSP-based approaches can achieve a similar
level of accuracy but with a much more compact quantum
circuit and a minimal number of ancilla qubits.
The unifyingmathematical argument that underlies many

of these approaches is the spectral mapping theorem for
Hermitianmatrices: LetA be aHermitianmatrix andfðAÞ be
a real-valued matrix function defined on the eigenvalues of
A. Then, the eigenvalues of the matrix fðAÞ are equal to the
values of the classical function f applied to the eigenvalues
of A, i.e., if λ1;…; λN are the eigenvalues of A, then the
eigenvalues of fðAÞ are fðλ1Þ;…; fðλNÞ. Furthermore, fðAÞ
is diagonalized by the same unitary matrix that diagonalizes
A. For instance, the quantum linear system problem corre-
sponds to fðAÞ ¼ A−1, Hamiltonian simulation corresponds
to fðAÞ ¼ cosðAtÞ; sinðAtÞ (for the real and imaginary
parts of e−iAt), and Gibbs state preparation corresponds
to fðAÞ ¼ e−A.
The limitation of this matrix-function-based perspective

can be readily observed when solving a general differential
equation,

∂tuðtÞ ¼ −AðtÞuðtÞ þ bðtÞ; uð0Þ ¼ u0: ð1Þ

When bðtÞ ¼ 0 and AðtÞ ¼ A∈CN×N is a general time-
independent matrix, the system has a closed form solution
uðtÞ ¼ e−Atu0. Even in this case, the eigenvalues of A may
not be real, the eigenvectors of A may not form a unitary
matrix, or A may not be diagonalizable at all. These

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 131, 150603 (2023)

0031-9007=23=131(15)=150603(6) 150603-1 Published by the American Physical Society

https://orcid.org/0000-0002-2964-3603
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.150603&domain=pdf&date_stamp=2023-10-13
https://doi.org/10.1103/PhysRevLett.131.150603
https://doi.org/10.1103/PhysRevLett.131.150603
https://doi.org/10.1103/PhysRevLett.131.150603
https://doi.org/10.1103/PhysRevLett.131.150603
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


difficulties prevent us from applying techniques such as
QSVT to implement fðAÞ ¼ e−At on a quantum computer,
and the situation becomes much more complicated when A,
b are not some fixed matrices and vectors, but are time
dependent. To solve Eq. (1), most existing quantum
algorithms convert the problem into a quantum linear
system problem (QLSP) with a fixed and dilated matrix
(i.e., a matrix of enlarged size). The resulting QLSP can
then be solved using many of the aforementioned tech-
niques based on the spectral mapping argument. However,
both the construction of the linear system problem and the
solution of the QLSP with near-optimal complexity (in
order to achieve desired dependence on parameters such as
the precision and the simulation time) can be very involved.
We shall compare our new proposals with the QLSP
approach later in the Letter.
In this Letter, we propose a significantly simplified

solution to the nonunitary process in Eq. (1). Our procedure
is not based on the spectral mapping theorem, but on a
surprising identity expressing the solution as a linear
combination of Hamiltonian simulation (LCHS) problems.
LCHS can be viewed as a special case of LCU. Namely,
each Hamiltonian simulation problem is described by a
unitary operator. Unlike LCU for Hamiltonian simulation
or solving linear systems, these unitary operators do not
commute with each other. LCHS is a very flexible
procedure. The linear combination can be implemented
in a hybrid quantum-classical fashion to compute observ-
ables related to the solution, using a small amount of
quantum resources, and is thus suitable for the setting of
early fault-tolerant quantum computers. The linear combi-
nation can also be coherently implemented to prepare the
solution directly in a quantum register and to reduce the
complexity. In this case, we show that the cost of LCHS is
optimal in terms of state preparation, which is useful when
the initial state u0 is difficult to prepare.
When the anti-Hermitian part of the matrix AðtÞ is fast-

forwardable, we may incorporate the interaction picture
Hamiltonian simulation in the LCHS to obtain further
improvements. A practical example with such a feature is
the open quantum system dynamics. Many problems in
quantum dynamics, such as molecular scattering [14],
photodissociation [15], and nanotransport [16], are defined
in an infinite space. Unlike solving the ground state of
molecules in quantum chemistry, replacing the infinite
space by a finite-sized box in these quantum dynamics
problems may lead to significant errors, at least along
certain extended dimensions. Therefore, boundary condi-
tions need to be carefully designed and implemented to
balance the accuracy of the simulation and the computa-
tional cost. One widely used method in quantum chemistry
is the complex absorbing potential (also called the imagi-
nary potential) method [15,17,18]. In this case, we show
that our LCHS algorithm can achieve near-optimal depend-
ence on all parameters in both state preparation and matrix
input models.

Linear combination of Hamiltonian simulation.—Let us
consider the homogeneous problem first with bðtÞ ¼ 0.
Theorem 1.—Let AðtÞ∈CN×N , t∈ I ¼ ½0; T� be decom-

posed into a Hermitian and an anti-Hermitian part,
AðtÞ¼LðtÞþ iHðtÞ, where LðtÞ¼½AðtÞþA†ðtÞ�=2 and
HðtÞ ¼ ½AðtÞ − A†ðtÞ�=2i. Assume LðtÞ≽0 for all t∈ I .
Then (T is the time ordering operator),

T e−
R

t

0
AðsÞds ¼

Z
R

1

πð1þ k2Þ T e−i
R

t

0
½HðsÞþkLðsÞ�dsdk: ð2Þ

Theorem 1 can be viewed as a generalization of
the Fourier representation of the exponential function
fðxÞ ¼ e−jxj,

f̂ðkÞ ¼ 1

2π

Z
R
e−jxje−ikxdx ¼ 1

πð1þ k2Þ : ð3Þ

Note that f̂ðkÞ ≥ 0 and
R
f̂ðkÞdk ¼ 1. Therefore, f̂ðkÞ is

the density of a probability distribution, called the Cauchy-
Lorentz distribution. If HðtÞ ¼ 0 and LðtÞ ¼ L is time
independent, Theorem 1 can be readily proved from Eq. (3)
and the spectral mapping theorem. This special-case for-
mula has been applied to simulating imaginary time
evolution dynamics [19,20]. However, our Theorem 1
works in a more general setting where the matrix can be
time dependent and non-Hermitian. Our general proof
hinges on a special instance of the matrix version of the
Cauchy integral theorem, which is a key for avoiding
the spectral mapping argument (see the Supplemental
Material [21]).
The condition that the Hermitian part LðtÞ is positive

semidefinite can always be satisfied without loss of gen-
erality. Indeed, by redefining uðtÞ ¼ ectvðtÞ, the equation
for vðtÞ is

∂tvðtÞ¼−½LðtÞþcIþ iHðtÞ�vðtÞþe−ctbðtÞ; vð0Þ¼u0:

ð4Þ

By choosing −c to be the minimum of the smallest
eigenvalues of LðtÞ on t∈ I , LðtÞ þ cI is a positive
semidefinite matrix.
When bðtÞ ¼ 0, the solution to Eq. (1) becomes

uðtÞ ¼ T e−
R

t

0
AðsÞdsu0. By discretizing the integral with

respect to k using a grid kj with quadrature weights ωj,
Eq. (2) becomes

uðtÞ ≈
X
j

cjUjðtÞu0; ð5Þ

where cj¼ωj=πð1þk2jÞ, and UjðtÞ¼T e−i
R

t

0
½HðsÞþkjLðsÞ�ds

is the propagator for a time-dependent Hamiltonian simu-
lation problem. Therefore, Eq. (2) compactly expresses the
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solution as a problem of LCHS, which can be cohe-
rently implemented using LCU (see the Supplemental
Material [21]).
If we are only interested in obtaining observables of the

form uðtÞ�OuðtÞ, we may implement the linear combina-
tion in a hybrid quantum-classical fashion. Notice that,
since Uj’s are unitary, the observable can be expressed as

uðtÞ�OuðtÞ ≈
X
k;k0

c�kck0 hu0jU†
kðtÞOUk0 ðtÞju0i: ð6Þ

We can then use the quantum computer to evaluate a series
of correlation functions hu0jU†

kðtÞOUk0 ðtÞju0i via the
Hadamard test for nonunitary matrices [22] and amplitude
estimation [3], and perform the summation on a classical
computer [23–25] (see the Supplemental Material [21]).
In the presence of the source term bðtÞ, we can use the

Duhamel’s principle (also known as variation of constants)
to express the solution as

uðtÞ ¼
Z
R

1

πð1þ k2Þ T e−i
R

t

0
½HðsÞþkLðsÞ�dsu0dk

þ
Z

t

0

Z
R

1

πð1þ k2Þ T e−i
R

t

s
½Hðs0ÞþkLðs0Þ�ds0bðsÞdkds:

ð7Þ

We may again use LCU to coherently prepare the state uðtÞ
or use an expression similar to that of Eq. (6) for hybrid
computation of observables.
Implementation.—The LCHS can be implemented in a

gate-efficient way by combining LCU with any
Hamiltonian simulation algorithms. Here we discuss the
simplest implementation of LCHS based on the product
formula, and we will discuss the one based on the truncated
Dyson series method later in the Letter.
We first truncate the integral in Eq. (2) on a finite

interval ½−K;K� and discretize it by a trapezoidal rule

with (M þ 1) grid points. We obtain T e−
R

t

0
AðsÞdsu0≈P

M
j¼0 cjT e−i

R
t

0
½HðsÞþkjLðsÞ�dsu0. Here cj ¼ wj=πð1þ k2jÞ,

wj ¼ ð2 − 1j¼0;MÞK=M, and kj ¼ −K þ 2jK=M are the
weights and nodes of the trapezoidal rule. To implement

each UjðtÞ ¼ T e−i
R

t

0
½HðsÞþkjLðsÞ�ds, we use a pth order

product formula with a fixed number of steps r for all j.
Then,

T e−
R

t

0
AðsÞdsu0≈

XM
j¼0

cjvj;

vj¼
Yr−1
l0¼0

YΞp−1

l¼0

 
e
−iH
�

ðl0þδlÞt
r

�
βlt
r e

−iL
�

ðl0þγlÞt
r

�
αlkjt

r

!
u0:

ð8Þ

Here Ξp is the number of the exponentials in the product
formula, αl’s and βl’s are the corresponding coefficients,
and γl’s and δl’s determine the discrete times at which the
time-dependent Hamiltonians are evaluated (see Ref. [26]
for an example of the product formula via Suzuki
recursion).
Suppose that we are given the state preparation oracle

Oprep∶ j0i → ju0i, the Hamiltonian simulation oracles
OLðs; τÞ ¼ e−iLðτÞs for jsj ≤ 1=kLk and OHðs; τÞ ¼
e−iHðτÞs for jsj ≤ 1=kHk, and the LCU coefficient oracle
Ocoef∶ j0i → ð1= ffiffiffiffiffiffiffiffiffiffikck1

p ÞPM
j¼0

ffiffiffifficjp jji. According to the
binary representations of j’s, we may first construct a
coherent encoding of the time evolution as the select oracle
SELLðs; τÞ ¼

P
M
j¼0 jjihjj ⊗ e−iLðτÞkjs using O½logðMÞ�

queries to OLðs; τÞ (see Supplemental Material [21] and,
e.g., [10,27,28] for details). Then Eq. (8) can be imple-
mented following the standard LCU approach by
first applying Ocoef ⊗ Oprep, then sequentially applying
SELLðαlt=r; ðl0 þ γlÞt=rÞ and OHðβlt=r; ðl0 þ δlÞt=rÞ for
l∈ ½Ξp� and l0 ∈ ½r�, and finally applying O†

coef on the
ancilla register. Such a procedure yields the quantum state

approximating ð1=kck1ku0kÞj0iaT e−
R

t

0
AðsÞdsu0 þ j⊥i,

encoding the homogeneous part in its first subspace.
For the inhomogeneous term in Eq. (7), after discretizing

the integral for both k and s using the multidimensio-

nal trapezoidal rule, we obtain
R
t
0T e−

R
t

s
Aðs0Þds0bðsÞds≈PMt

j0¼0

P
M
j¼0 c̃j;j0T e

−i
R

t

sj0
½Hðs0ÞþkjLðs0Þ�ds0 jbðsj0 Þi. Here c̃j;j0 ¼

vj0wjkbðsj0 Þk=πð1þ k2jÞ, wj, kj are as defined before,
vj0 ¼ ð2 − 1j0¼0;MÞT=2Mt, and sj0 ¼ j0T=Mt. This can also
be implemented by the same Trotterization and LCU
approach as the homogeneous case (see Supplemental
Material for details [21]). Notice that the evolution time
of different Hamiltonians in the LCHS of the inhomo-
geneous term varies, so we will assume the input model of
H, L to coherently encode the evolution of different
Hamiltonians with different time periods, as O0

Lðs;τ0;τ1Þ¼PMt
j0¼0

jj0ihj0j⊗e−iL½τ0j0þτ1ðMt−j0Þ�sðMt−j0Þ and O0
Hðs;τ0;τ1Þ¼PMt

j0¼0
jj0ihj0j⊗e−iH½τ0j0þτ1ðMt−j0Þ�sðMt−j0Þ for jsjMt≤1=kHk.

The input for bðtÞ is also in a time-dependent manner as
Ob∶ jj0ij0i → jj0ijbðsj0 Þi. All of these oracles are an
extension of the time-dependent encoding proposed in [27].

To linearly combine T e−
R

t

0
AðsÞdsu0 andR

t
0 T e−

R
t

s
Aðs0Þds0bðsÞds, we append an extra ancilla qubit,

prepare both states controlled by this ancilla qubit, and
implement the LCU again at the outer loop using a single-
qubit rotation. The final step is to measure all the ancilla
registers, and if all the outcomes are zero, then the resulting
state approximately encodes the solution uðtÞ of the
ordinary differential equation.
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Computational cost.—The complexity of our algorithm
for solving Eq. (1) is given as follows. Here juðTÞi is the
solution to Eq. (1) at the final time T.
Theorem 2.—There exists a quantum algorithm that

prepares an ϵ approximation of the state juðTÞi with Ωð1Þ
success probability and a flag indicating success, using

(1) queries to the aforementioned input models ofH and
L a total number of times

Õ
��ku0k þ kbkL1

kuðTÞk
�

2þ2=p Γ1þ1=p
p T1þ1=p

ϵ1þ2=p

�
; ð9Þ

where kbkL1
¼ R T0 kbðsÞkds and Γp ¼ max0≤q≤p;τ∈ ½0;T�

ðkHðqÞðτÞk þ kLðqÞðτÞkÞ1=ðqþ1Þ,
(2) queries to the state preparation oracle Oprep and the

source term inputmodelOb forO
�
ðku0kþkbkL1Þ=kuðTÞk

�
times,
(3) O½logðΓ1kbkC2T=ϵÞ� ancilla qubits, where kbkC2 ¼

max0≤q≤2;τ∈ ½0;T�ðkbðqÞðτÞkÞ,
(4)O

�
ðku0kþkbkL1Þ=kuðTÞk

�
additional 1-qubit gates.

The proof of Theorem 2 can be found in the Supplemental
Material [21]. Our algorithm uses a small number of queries
to the state preparation oracle. This is because each run of the
LCU procedure only requiresOð1Þ uses of such oracles and
the overall complexity only relates to the success proba-
bility, which contributes to a ðku0k þ kbkL1Þ=kuðTÞk fac-
tor. The query complexity to the matrix input in each run
depends linearly on the number of time steps, which
contributes to the scaling Γ1þ1=p

p T1þ1=p=ϵ1=p according to
the pth order product formula error bound. The extra 1=ε1=p

scaling is due to the relative error scaling. Notice that in the
matrix query complexity there are still extra terms including
1=ϵ and ½ðku0k þ kbkL1Þ=kuðTÞk�1þ1=p. The former is
because we need to simulate the Hamiltonian up to
K ¼ Oðϵ−1Þ, while the latter arises from the necessity of
bounding the relative Trotter error. Ancilla qubits are used to
implement quadrature.
Our algorithm and Theorem 2 can be directly applied to

the special case where AðtÞ≡ A is time independent. In this
case, we may further simplify the implementation and
reduce the computational cost. First, the coherent enco-
ding of the time evolution is no longer needed, and the
select oracles in the LCU procedure can be efficiently
constructed using OLðsÞ ¼ e−iLs and OHðsÞ ¼ e−iHs with
O½logðMÞ logðMtÞ� cost. Second, the parameter Γp can be
improved to the commutator scalings between H and L
thanks to the improved error bound for time-independent
product formula [29]. We refer the reader to the
Supplemental Material for more details [21].
Optimal state preparation cost and comparison with

other methods.—The query complexity of the LCHS
approach to the state preparation oracle Oprep is

O
h
ðku0k þ kbkL1Þ=kuðTÞk

i
. In fact, when b ¼ 0, this

corresponds to the dependence of a quantity denoted by
q ¼ ku0k=kuðTÞk in quantum differential equation solvers.
Such a linear scaling of q cannot be improved. From the
perspective of quantum complexity theory, the renorma-
lization from ku0k to kuðTÞk could be utilized to imple-
ment postselection, and it would imply the unlikely
consequence BQP ¼ PP (similar discussions appear in
Sec. 8 of [30] and Sec. 7 of [31]). Moreover, as shown
in Corollary 16 of [32], any quantum differential equation
algorithm must have worst-case query complexity ΩðqÞ to
the state preparation oracle, indicating the optimal state
preparation cost that our LCHS approach achieves.
Most generic quantum differential equation algorithms

[5,6,30,33,34] convert the time-dependent differential
equation problem (1) into a QLSP. The efficiency of these
quantum algorithms relies on the efficiency of the quantum
linear system algorithm (QLSA), which typically takes a
large number of queries to the state preparation oracle. In
particular, the state-of-the-art QLSA takes O½κ logð1=ϵÞ�
queries [35], where κ is the condition number of the QLSP
matrix and depends on T and kAðtÞk. However, our
algorithm directly implements the time evolution operator
by LCHS without using the QLSA, so the number of the
state preparation oracle is significantly reduced. For exam-

ple, when b ¼ 0, our algorithm takes O
�
ku0k=kuðTÞk

�
queries to the state preparation, while the state-of-the-art
QLSA-based quantum Dyson series method [34] queries

the initial state O
n
½ku0k=kuðTÞk�kAkT logð1=ϵÞ

o
times.

Our algorithm removes the explicit dependence on kAk, T,
and ϵ and matches the lower bound. Additionally, in the
QLSA-based approaches, the value of κ can be difficult to
estimate in practice, and it is common that the theoretical
bound significantly overestimates the value of κ [33].
We also note that the time marching method [36]
does not involve QLSP and can query the initial state

O
�
ku0k=kuðTÞk

�
times as well. In this case, our LCHS

approach removes the need of implementing the uniform
singular value amplification procedure and can thus be
simpler to implement. It also outperforms the time march-
ing method in terms of the number of matrix queries with
respect to the evolution time, with an improvement from
OðT2Þ to OðT1þoð1ÞÞ.
Applications to open quantum system dynamics with

complex absorbing potentials.—In its simplest form, the
complex absorbing potential method [15,17,18] replaces
the real potential by a complex one, and the time-dependent
Schrödinger equation becomes

i∂tuðr; tÞ ¼
�
−
1

2
Δr þ VRðr; tÞ − iVIðrÞ

�
uðr; tÞ: ð10Þ
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Here VRðr; tÞ is the real time-dependent external potential,
and −iVIðrÞ is the absorbing potential and can often be
chosen to be time independent. The minus sign reflects that
this is a damping potential, and VI can be chosen to be
bounded and non-negative. For simplicity, we only discuss
Eq. (10) in the context of single-particle dynamics. This
formulation can be generalized to accommodate multi-
particle dynamics. Our method can also be generalized to
other boundary treatment methods such as the perfectly
matched layer method [37,38]. In these applications, we are
interested in the case before the scattering wave leaves the
region of interest, i.e., kuðTÞk2 ¼ R juðr; TÞj2dr is not too
small. Such a condition can also be satisfied if u0 is a
near-resonance state. Another widely used method for
modeling open quantum system dynamics is the
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) quan-
tum master equation [39–41]. The non-Hermitian quantum
dynamics (10) is also related to a class of numerical
methods for solving the GKSL equation, known as the
quantum jump or the Monte Carlo wave function method
[42,43].
To solve Eq. (10) using our LCHS algorithm, we first

discretize the spatial variable using N equidistant grid
points, and the Laplace operator is discretized by the central
difference formula. In the context of Eq. (1), the Hermitian
part HðtÞ ¼ − 1

2
Δr þ VRðtÞ is the standard Hamiltonian

with kHðtÞk ¼ OðN2 þmaxtkVRðtÞkÞ, and the non-
Hermitian part L ¼ VI is a time-independent positive
semidefinite matrix. Furthermore, the dynamics e−ikLt

can be fast-forwarded in the sense that e−ikLt can be
performed with cost independent of k, t, and kLk [44],
so we may perform the Hamiltonian simulation in the
interaction picture with the truncated Dyson series method
[27] to avoid computational overhead brought by K.
In the interaction picture, the LCHS becomes

T e−
R

t

0
AðsÞds ≈

XM
j¼0

cje−iLkjt
�
T e−i

R
t

0
HIðs;kjÞds

�
eiLkjt; ð11Þ

where HIðs; kÞ ¼ eiLksHðsÞe−iLks. Equation (11) can be
directly implemented by LCU. Notice that the derivative of
HI still scales linearly in K, but the cost of the truncated
Dyson series method scales only logarithmically with
respect to the derivative of HIðsÞ and thus K [27].
Our main result is as follows, which achieves near-

optimal scaling in all parameters. The proof is given in the
Supplemental Material [21]. We remark that the following
result also holds in a more general case, where HðtÞ is an
arbitrary time-dependent Hamiltonian and L is a time-
independent fast-forwardable Hamiltonian.
Theorem 3.—Consider the spatially discretized Eq. (10)

using finite difference with N equidistant grid points.
Suppose that we are given the oracles OVI

∶ jrij0i →
jrijVIðrÞi, OVR

∶ jrijsij0i → jrijsijVRðr; sÞi, and the state

preparation oracle Oprep for the initial condition. Then
there exists a quantum algorithm that prepares an ϵ
approximation of the discretized state juðTÞi with Ωð1Þ
success probability and a flag indicating success, using

Õ
� ku0k
kuðTÞkTðmax

t
kHðtÞkÞpoly log

�
maxtkV 0

RðtÞkkVIk
ϵ

��
ð12Þ

queries to OVI
and OVR

, and Oðku0k=kuðTÞkÞ queries to
Oprep. Here maxtkHðtÞk ¼ OðN2 þmaxtkVRðtÞkÞ.
Discussion.—LCHS provides a simple way for solving

the nonunitary dynamics in the form of Eq. (1). Compared
to existing approaches based on QLSP, LCHS is simple,
flexible, and achieves optimal state preparation cost. The
linear combination procedure can be implemented in a
hybrid quantum-classical fashion to facilitate the compu-
tation of observables on early fault-tolerant quantum
computers. The most significant limitation of LCHS is
that the spectral radius of the Hermitian part L needs to be
multiplied by a factor up to the frequency cutoff K, where
K ¼ Oð1=ϵÞ due to the quadratic decay of the kernel
ð1þ k2Þ−1. This increases the maximal circuit depth by a
factor ϵ−1. The problem can be ameliorated when the
dynamics of L can be fast-forwarded. For instance, in the
case of simulating open quantum system dynamics using a
complex absorbing potential, our LCHS-based solver
achieves near-optimal complexity in all parameters.
However, Hamiltonian simulation in the interaction picture
[27] may be difficult to implement. A more desirable
solution to this problem would be to replace the kernel
ð1þ k2Þ−1 by a fast decaying one, so that the truncation
range can be dramatically reduced. It remains an open
question how to obtain the best possible solver that is
optimal in all parameters for simulating general nonunitary
dynamics.
When a task can be solved using either LCU or QSP-

based techniques, the latter are often preferred due to their
superior resource efficiency, as well as ease of implemen-
tation. However, all QSP-based techniques are based on the
spectral mapping theorem. LCHS avoids this spectral
mapping argument and thus significantly expands the
application range of LCU. It would be interesting to see
if the mathematical reformulation of LCHS can inspire
further generalization of QSP-based approaches, particu-
larly for applications involving non-normal matrices.
Additionally, exploring extensions of LCHS to other
quantum linear algebra problems can be a promising
direction for future research.

Note added.—Recently, we became aware of a recent work
called “Schrödingerisation” [45], which transforms a gen-
eral class of linear partial differential equations into a
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dilated Hamiltonian dynamics and can be used to provide a
complementary perspective of our result in Theorem 1.
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