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Stabilizer operations are at the heart of quantum error correction and are typically implemented in
software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be
designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum information.
We demonstrate such a hardware implementation of stabilizers in a superconducting circuit composed of
chains of π-periodic Josephson elements. With local on-chip flux and charge biasing, we observe a
progressive softening of the energy band dispersion with respect to flux as the number of frustrated
plaquette elements is increased, in close agreement with our numerical modeling.

DOI: 10.1103/PhysRevLett.131.150602

Protecting fragile information in quantum processors
requires some form of quantum error correction (QEC).
With typical “software” QEC techniques such as the surface
code [1], stabilizing a single logical qubit requires many
physical qubits, each of which is typically implemented as a
weakly nonlinear oscillator. Error correction and computa-
tion is achieved by a string of operations and measurements
that allow identification of bit-flip and phase-flip errors. An
alternative is to implement quantum stabilizers directly in
hardware. Here, error correction arises from the natural
quantum dynamics, reducing the need for repeated entan-
gling gates, measurements, and a multitude of control lines
and complex classical control hardware. In this approach,
the highly nontrivial Hamiltonian results in a tiny protected
subspace within a huge Hilbert space.
Both approaches can be characterized by the error

suppression factor Λ, the rate at which the logical error
decreases with system size. The long time required by
each round of software error correction for current transmon
qubit arrays implies that Λ is only marginally greater than
one [2]. In this work, we experimentally demonstrate the
potential to achieve much larger Λ≳ 100 with the Hamil-
tonian approach. The price that one pays is the appearance of
relatively low-energy modes with gaps ≲1 GHz that make
initialization challenging; these gaps can be made higher
through parameter optimization. Before building a scalable
logical qubit with hardware QEC, it is crucial to demonstrate
the effectiveness of protection based on Hamiltonian engi-
neering as system size increases. In this Letter, we observe
and quantify the stabilizing interaction Hamiltonian between
unprotected elements. We perform spectroscopic measure-
ments with local flux control and observe signatures of
stabilizer terms in the Hamiltonian. Specifically, we find a
progressive flattening of the energy bands with respect to

flux as system size increases, consistent with linear flux
dispersion for a system size of one, quadratic for two, and
cubic for three. In addition, we observe a characteristic
periodic modulation with offset charge as we tune between
regimes with different levels of protection.
Avariety of qubit designs with intrinsic protection against

decoherence have been studied previously [3,4], including
the 0-π qubit [5–7], the two-Cooper-pair tunneling qubit [8],
the bifluxon qubit [9], and rhombi arrays [10–12]. In this
last work, previous devices had limited symmetry due to the
inability to tune each element to the optimum flux inde-
pendently; in addition, the devices were sensitive to offset
charge fluctuations on internal nodes in each element, and
the suppression of tunneling between the logical states
was limited. Similar to previous protected qubit designs,
our device is based on π-periodic Josephson elements [13],
for which the Josephson energy is proportional to cos 2φ,
where φ is the superconducting phase difference across
the element. Here, charge transport consists of coherent
tunneling of 4e, as opposed to 2e for a conventional
junction. We implement each element as a plaquette
formed from a dc superconducting quantum interference
device (SQUID), consisting of two conventional
Josephson junctions and a non-negligible loop inductance.
When flux biased at frustration, Φ0=2 (Φ0 ≡ h=2e), the
first harmonic of the Josephson energy (proportional to
cosφ) vanishes. This leaves a second-order term E2 cos 2φ,
with sequential minima separated by π; E2 depends on the
Josephson energy of the individual junctions EJ and the
energy of the SQUID inductance EL (Supplemental
Material [14], Sec. XI); φ is, thus, a compact variable
residing on a circle. Biasing below (above) Φ0=2 raises
(lowers) the π wells relative to the 0 wells; for flux bias at
0mod Φ0, the potential becomes proportional to cos φ.
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A small asymmetry between the two junctions has a
similar but less severe effect on the cos 2φ potential
compared to a small flux deviation from frustration
(Supplemental Material [14], Sec. I).
For a single frustrated plaquette with a large capacitive

shunt Csh [Fig. 1(a)], tunneling between the ground states
in the 0; π wells is suppressed. In the phase basis, wave
functions localized in the 0; π wells are thus disjoint and
well protected against bit-flip errors. At the same time, the
wave functions are spread out in the charge basis, corre-
sponding for the 0ðπÞ states to superpositions of even (odd)
multiples of Cooper pairs on the logical island where the
plaquette connects to Csh. For bias away from frustration,
the energy levels disperse linearly [Fig. 1(d)], with no
protection against phase flips due to flux noise.
We next consider concatenation of multiple plaquettes

while maintaining the large shunt Csh across the array. At
double frustration, when two plaquettes are simultane-
ously biased to Φ0=2, there are four minima in the two-
dimensional surface defined by the phase drops across each
plaquette: 00, ππ, 0π, and π0. For the two-plaquette circuit,
this has the topology of a torus, since φ for each plaquette is
a compact variable with 2π periodicity [Figs. 1(f) and 1(g)].
If the capacitance of the intermediate island between
plaquettes to ground Cisl is sufficiently small, with charging
energy Eisl

C ¼ ð2eÞ2=2Cisl > EJ, quantum fluctuations of
the island phase cause hybridization along the direction
between wells of the same parity; that is, 00 will hybridize
with ππ and 0π with π0. Levels with the same parity
develop a splitting near double frustration, with ground
states corresponding to the symmetric superpositions 00þ
ππ (0π þ π0) for even (odd) parity. Excited states are given
by the antisymmetric superpositions 00 − ππ (0π − π0) for
even (odd) parity; these states are separated by an energy
ΔSA from the symmetric ground state of the same parity.
The hybridized ground state wave functions of opposite
parity are the logical states for the device [Fig. 1(h)] and
form interlocking rings on the torus [Fig. 1(g)]. Because of
delocalization and intertwining of the hybridized ground

state wave functions, local perturbations affect the logical
states symmetrically. Larger Eisl

C increases ΔSA and further
flattens the bands [Fig. 1(i)], thus protecting against
dephasing from flux noise.
Treating each plaquette as a spin-1=2 particle, the ΔSA

splitting corresponds to an XX stabilizer term in the

Hamiltonian of frustrated plaquettes i and j:HXX¼−ðΔðijÞ
SA =

2ÞXiXj, where Xi is the Pauli σx matrix for plaquette i.
The error suppression factor Λ can be approximated as the

ratio ofΔðijÞ
SA to twice the scale hZ of dephasing fluctuations

for single plaquette i, δHðtÞ ¼ hZðtÞZi, which, for this
device, will be dominated by flux noise (Supplemental
Material [14], Sec. XII). Csh still suppresses tunneling
between logical states of opposite parity, protecting against
bit-flip errors.
In our experiments, we target a three-plaquette circuit

with EJ ∼ EL ∼ 1.5 K (kB ¼ 1), where EL is the energy
ðΦ0=2πÞ2=L of the inductance L on each plaquette arm. We
aim for a charging energy of each plaquette junction
EC ¼ ð2eÞ2=2Cj ∼ 3.5 K, where Cj is the junction capaci-
tance. These values can be achieved with conventional
Al-AlOx-Al junctions. We implement the inductors with
chains of large-area junctions, similar to fluxonium [17],
thus eliminating charge fluctuations on the internal nodes
between each small junction and inductor within a pla-
quette. The shunt capacitor Csh ¼ 1.2 pF is capacitively
coupled to a resonator. There are four flux-bias lines, each
of which couples strongly to one or two plaquettes. There
are three charge-bias lines: one to the logical island that
forms Csh and one to each intermediate island between
plaquettes (Supplemental Material [14], Secs. II–V).
For device tuneup, we scan various pairs of flux-bias

lines while monitoring the dispersive shift of the readout
resonator. Each blue line in Figs. 2(a) and 2(b) corre-
sponds to one plaquette passing through frustration. A
crossing of two (three) lines indicates double (triple)
frustration. The spacing between parallel sets of lines
defines the period Φ0. We fit the slopes and spacing of the
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FIG. 1. Concatenation of π-periodic plaquettes. (a) Schematic of single plaquette shunted by Csh. (b) cos 2φ potential at frustration
(ΔΦ ¼ Φ −Φ0=2 ¼ 0) with localized wave functions in 0 and π wells, drawn in the 0; π basis for vanishingly small tunneling.
(c) Sketch of CW and CCW tunneling paths for φ going between 0,π wells indicated by blue and red dots, respectively. (d) Linear flux
dispersion of 0 and π levels for vanishing tunnel splitting. (e) Schematic of two plaquettes shunted by Csh with small capacitance Cisl
from intermediate island to ground. Potential with respect to phase across each plaquette displayed on (f) contour plot and (g) surface of
torus; blue (red) lines correspond to hybridized even- (odd-) parity states; arrows indicate CWand CCW tunneling paths between wells
of the same parity. (h) 1D cut of effective potential at double frustration. (i) Quadratic dispersion of even- (odd-) parity levels and flat
dispersion of odd- (even-) parity levels near double frustration for simultaneous scan of plaquette fluxes along ΔΦ1 ¼ ΔΦ2

(ΔΦ1 ¼ −ΔΦ2) on the left (right) (sketches do not include higher levels within a well).
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lines to extract the inductance matrix mapping bias levels
on each flux line to net flux coupled to each plaquette
(Supplemental Material [14], Sec. VI). By inverting this
matrix, we determine bias parameters for moving along
arbitrary flux vectors.
We next map out the flux dispersion of the level

transitions for different frustration conditions. With our
ability to adjust the various plaquette fluxes independently
using local flux biasing, we maintain some plaquettes at
unfrustration (0modΦ0), where the plaquette behaves like
a conventional Josephson element, while we scan the flux
of other plaquettes near frustration. In Fig. 3, we consider
the expected level structure and define the types of possible
transitions. We refer to transitions between levels in the
same well as plasmons; transitions between different wells
are referred to as heavy fluxons because of the vanishingly
small gap associated with the corresponding anticrossing,
a consequence of the large effective mass from Csh.
Transitions between hybridized levels of the same parity
but opposite symmetry, for example, 00þ ππ to 00 − ππ,
disperse sharply with flux; these are known as light fluxons
due to the low effective mass in the φ2 ¼ −φ1 direction
from the smallness of Cisl.
To perform spectroscopy, we drive a microwave probe

tone into the charge bias line coupled to Csh while
monitoring the cavity dispersive shift. Near single frus-
tration, we initialize in the π well prior to each spectroscopy
pulse by setting the bias to 0.1Φ0 from frustration, thus
moving out of the protected space; we then quickly ramp the
bias to the measurement point and apply spectroscopy and
readout pulses (Supplemental Material [14], Sec. VII). In

Fig. 4(a), we show single-frustration measurements for
plaquette 2. Features that disperse gradually correspond
to plasmons within the π well where the qubit is initialized.
We continue to observe transitions out of the π well even
when the device is biased past frustration, where the π well
is higher in energy than the 0 well, due to suppressed
tunneling between states of opposite parity. In addition to
the 0-1, 0-2, and 0-3 transitions, we observe transitions out
of excited states in the well, such as 1-2, 1-3, and 1-4, and
even 2-3 and 2-4, due to insufficient cooling into the ground
state of the π well. Because of the spurious excitations to
multiple levels, we are unable to apply initialization
techniques that are commonly used for other low-gap
qubits, such as heavy fluxonium [31,32]. Nevertheless,
we observe only weak transitions out of the 0 well,
indicating that we are predominantly preparing the circuit
in the π well. In addition to the plasmons, we also observe
heavy fluxons that disperse linearly with flux, which arise
from transitions between various levels in the π and 0 wells,
where the barrier to tunneling is small because the initial
state is an excited level or the wells are tilted by the flux
bias; note that we do not observe the heavy fluxon between
the protected ground states in the 0 and π wells, which are
the logical levels. We observe similar behavior for pla-
quettes 1 and 3 (Supplemental Material [14], Sec. X).
The curves included in Fig. 4(a) are generated from

detailed numerical modeling of the device energy levels
(Supplemental Material [14], Sec. IX). With the ability to
calculate the level spectrum, we adjust the circuit param-
eters to fit the measured transitions from the spectroscopic
data (Supplemental Material [14], Sec. X). We observe
excellent agreement, even capturing splittings that result
when a fluxon crosses a plasmon due to resonant tunnel
coupling between aligned levels in the 0 and π wells. In
addition, these splittings depend on the offset charge on the
Csh island [Fig. 4(e)] due to Aharonov-Casher (AC)
interference [33,34] between tunneling paths clockwise
(CW) or counterclockwise (CCW) in the cos 2φ potential
[Fig. 1(c)] (Supplemental Material [14], Sec. VIII). At
single frustration, as expected, the heavy fluxon dispersion
is linear down to zero energy, thus offering no protection
against flux noise.
Upon tuning to double frustration, we observe a quali-

tatively different behavior. We initialize in the ππ well of the
two-plaquette potential, then quickly ramp near double
frustration. We scan both plaquette fluxes in tandem along
the direction between the regimes with a global potential
minimum at ππ and 00 and passing through double
frustration. Spectroscopy at plaquette (12) double frus-
tration shows plasmons similar to the single-frustration
measurements [Fig. 4(b)]. However, unlike single frus-
tration, where suppressed tunneling between the 0; π wells
allows the device to remain in the π well even after the flux
is ramped well past frustration, at double frustration, the
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large symmetric-antisymmetric gap Δð12Þ
SA causes an adia-

batic transition from ππ to 00 upon passing through double
frustration. At higher frequencies, we observe steeply
dispersing light fluxons, with the minimum at double

frustration corresponding to Δð12Þ
SA from hybridization of

the 00 and ππ wells. For scans along the odd-parity flux
direction, or if the circuit is initialized in an odd-parity well
and scanned in the even-parity flux direction, the spectral
features become swapped [Fig. 1(i) and Supplemental
Material [14], Sec. X C].
As with spectroscopy at single frustration, we include

curves for the various transitions from numerical model-
ing and fitting for double frustration [Fig. 4(b)]. Here, the
larger Hilbert space requires a significant increase in
computational resources. Our modeled transition curves
agree well with the measured spectroscopy, capturing both
the plasmons and heavy fluxons. We are unable to directly
drive a microwave transition between the logical states in
the 00þ ππ and 0π þ π0wells due to the vanishing matrix
element, the basis of protection. However, the increasing
flatness of the higher fluxon transitions as one moves
lower in the spectrum indicates that the logical levels will
be the flattest. This can also be seen in the blue modeled
curves near the bottom of the figure highlighting the
dispersion of the logical level transition, which exhibits
quadratic curvature. Additionally, our modeling captures
the light fluxons to the antisymmetric levels.
The effectiveness of concatenation depends on Cisl of the

intermediate island between the two frustrated plaquettes.

For plaquette (12) double frustration, Δð12Þ
SA is 2.7 GHz. At

plaquette (23) double frustration, which involves a signifi-
cantly larger Cisl because of the orientation of the plaquette

2 inductors, we observe a smaller Δð23Þ
SA and a correspond-

ingly larger curvature of the heavy fluxon transition.Δð13Þ
SA is

even smaller because of the excess capacitance to ground of
the unfrustrated plaquette 2 (Supplemental Material [14],
Sec. X). Figure 4(h) shows the variation of ΔSA with Eisl

C ,

including measured values of ΔðijÞ
SA for each combination of

double frustration, as well as numerically modeled values.
For a typical flux noise level, hZ for these plaquettes will be

∼2 MHz, which, when combined with the measured Δð12Þ
SA ,

is consistent with Λ ∼ 700. Note that this is an extracted
parameter characterizing protection in one channel: dephas-
ing. The complete Λ parameter for a logical qubit must be
derived from the scaling of T1 and T2 with system size,
which is beyond the scope of this Letter. Nonetheless,Λ can
also be expressed as the ratio of T2 for a higher degree of
frustration relative to T2 at single frustration (Supplemental
Material [14], Sec. XII).
In addition to the symmetric-antisymmetric gap, another

characteristic of the stabilizer term is the periodic modu-

lation of ΔðijÞ
SA with offset charge on the intermediate island

between plaquettes i and j. Destructive AC interference of
tunneling paths in the CW and CCW directions on the
constant-parity circles for double frustration [Fig. 1(g)]

causes ΔðijÞ
SA to vanish for island offset charge near

emod2e. We observe periodic modulation with charge bias
to the islands with a spectroscopy pulse on the 0–1 transition
[Fig. 4(f)]. While the island offset charge is stable on
timescales up to one hour, it is critical there are no jumps to
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near emod2e. Thus, it is important to actively stabilize these
offset charges through periodic calibrations (Supplemental
Material [14], Secs. VIII and IX).
By simultaneously frustrating all plaquettes, we measure

spectroscopy near triple frustration [Fig. 4(c)]. In this case,
we are unable to numerically fit the level spectrum, since the
Hilbert space size becomes prohibitively large. Nonetheless,
we are able to compute the spectrum using parameter values
from previous fits to double and single frustration, although
the calculation takes several weeks to complete. We obtain
reasonable agreement with the measurements, although the
spectral features are more challenging to resolve compared
to other degrees of frustration; the higher transitions are off
by ∼5%–10%, which is not unreasonable considering the
circuit complexity and intertwined wave functions, given
limitations on the number of quantum states needed for the
computation to converge. Around 1.5 GHz, we observe a
prominent central flat feature of width ∼7 mΦ0 around the
0–3 transition, which is uncharacteristic for parabolic, let
alone linear, dispersion; below this, the 0–1 transition around
0.6 GHz is similarly flat. The transition between the logical
states, which cannot be directly driven due to protection of
these states from the environment, will be comparably flat
(Supplemental Material [14], Sec. X.D). Also, the light
fluxon transitions are qualitatively different compared to
double frustration. We additionally observe charge modu-
lation with two different periods and slopes corresponding to
separate tuning of offset charge on each intermediate island
[Fig. 4(g)], characteristic of a Hamiltonian with two stabi-

lizer terms: HXX ¼ −ðΔð12Þ
SA =2ÞX1X2 − ðΔð23Þ

SA =2ÞX2X3. For

our present device Δð23Þ
SA is smaller than Δð12Þ

SA due to excess
ground capacitance from plaquette 2, resulting in the logical
level dispersion at triple frustration being only marginally
flatter than at double frustration [Fig. 4(d)] (Supplemental
Material [14], Sec. XI).
While our present device successfully demonstrates the

implementation of stabilizer terms in hardware, develop-
ment of protected qubits based on hybridized ground states
of opposite parity requires larger gaps to the excited states.
This, in conjunction with weaker radiative coupling to
parasitic high-frequency modes from a more compact Csh,
perhaps achieved using a parallel-plate rather than planar
design, will avoid spurious excitations to multiple excited
levels that complicate the initialization process for our
present device. A device with higher excited-state energies
that can be operated in the qubit regime requires larger EJ,
ideally at least 3 K. We must also maintain even larger EC
to have large ΔSA at double frustration with the resulting
flat dispersion. For a qubit with these improved parameters
subject to typical flux- and charge-noise levels, optimistic
but feasible junction asymmetries, and dielectric loss from
a parallel-plate Csh, we project Λ≳ 100, corresponding to
T1 ≫ 1 s and T2 ∼ 60 ms (Supplemental Material [14],
Sec. XI), well beyond current state-of-the-art super-
conducting qubits.
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