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Heisenberg-type measurement uncertainty relations (MURs) of two quantum observables are essential
for contemporary research in quantum foundations and quantum information science. Going beyond, here
we report the first experimental study of MUR of three quantum observables. We establish rigorously
MURs for triplets of unbiased qubit observables as combined approximation errors lower bounded by
an incompatibility measure, inspired by the proposal of Busch et al. [Phys. Rev. A 89, 012129 (2014)]. We
develop a convex programming protocol to numerically find the exact value of the incompatibility measure
and the optimal measurements. We propose a novel implementation of the optimal joint measurements
and present several experimental demonstrations with a single-photon qubit. We stress that our method is
universally applicable to the study of many qubit observables. Besides, we theoretically show that MURs
for joint measurement can be attained by sequential measurements in two of our explored cases. We
anticipate that this work may stimulate broad interests associated with Heisenberg’s uncertainty principle in
the case of multiple observables, enriching our understanding of quantum mechanics and inspiring
innovative applications in quantum information science.
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Introduction.—Heisenberg’s uncertainty principle [1]
is one of the most distinctive features in which quantum
mechanics differs from classical theories. The extensive
exploration of the uncertainty principle about a pair of
quantum observables has revealed two types of uncertainty
relations, namely, the preparation uncertainty relations
(PURs, also known as the Heisenberg-Robertson uncer-
tainty relation) [2,3] and the measurement uncertainty
relations (MURs) [4–31]. While the PURs prohibit us
from preparing quantum states with definite values for
incompatible observables, the MURs capture the essence
of measurement incompatibility [32,33], namely, quantum
observables may be immeasurable in a single apparatus.
These uncertainty relations deepen our understanding of
quantum mechanics and crucially underlie quantum mea-
surements and quantum information science [33–42].
Hence it is of high interest to explore uncertainty relations
of multiple (≥ 3) quantum observables from both funda-
mental and practical perspectives. There has been signifi-
cant progress in the study of PUR for multiple quantum
observables [38,43–54]. In contrast, the study of MUR for
multiple quantum observables has remained largely unex-
plored. A central problem is how to establish MUR for
multiple observables and to find and experimentally realize
the optimal measurement. Furthermore, it has been shown

that joint measurement can always be implemented by
sequential measurements for two observables [55], thus, the
MUR for joint measurement applies also to the sequential
scenario. However, the relation between joint measurement
and sequential measurement schemes for multiple observ-
ables is another open problem.
Heisenberg discussed in his original gedanken experi-

ment of microscopes [1], when a particle encounters both a
position and a momentum measurement, the accuracy of an
approximate position measurement is related to the dis-
turbance of the particle’s momentum measurement. This
uncovers a deep nature of quantum mechanics: some
quantum measurements disturb each other. Translating
Heisenberg’s intuition into the modern quantum formalism
has led to the derivations of different measurement
uncertainty relations by viewing Heisenberg’s gedanken
experiment at different angles, with each having its own
merits [33,40]. As noted by Busch, Lahti, and Werner
(BLW), Heisenberg’s original description of the gedanken
experiment of microscopes in a manner of sequential
measurement is covered by the joint measurement scheme.
By approximating two incompatible quantum observables
ðA;BÞ via the implementation of two compatible quantum
observables ðC;DÞ and adopting the measures of error
and disturbance to quantify the differences between two
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probability distributions obtained in separate runs of
measurements, BLW arrived at a state-independent uncer-
tainty relation for position-momentum measurement in the
gedanken experiment of microscope and its variant for a
pair of qubit observables. The BLW uncertainty relation
presents the characterization of the overall performance
of measuring device and is of unrestricted applicabilitys
[13,14]. On the other hand, it turns out that joint meas-
urement of two observables can always be implemented
sequentially [55].
In this Letter we report a significant advancement

regarding the central problem by presenting the
Heisenberg-type measurement uncertainty relation of three
qubit observables with attainable lower bounds and its
experimental demonstration. Besides, we also report a
positive progress in the exploration of the other open
problem. Specifically, we first establish the MUR for a
triplet of unbiased qubit observables by approximating
three incompatible quantum observables via the implemen-
tation of three compatible quantum measurements and
provide a lower bound for the quantum incompatibility
measure with exact condition of attainability, following the
approach of BLW [14]. Second, we find the exact value of
incompatibility measure and the corresponding optimal
measurement via a convex programming protocol. Third,
we design a novel implementation of optimal measurement,
with which we showcase several experimental demonstra-
tions saturating the MURs. We stress that this is the first
experimental test of MUR of multiple observables with
an attainable lower bound, which is directly relevant to the
fundamental limit of quantum precision measurement
[23,26]. Lastly, We discuss that the triplet MUR for joint
measurement can also be attained by sequential measure-
ments in two special cases explored in our experiments.
Triplet measurement uncertainty relation.—We consider

three ideal qubit observables M¼fMi¼ m⃗i · σ⃗g3i¼1, where
σ⃗ ¼ fσX; σY; σZg are Pauli matrices and m⃗i are unit
Bloch vectors. If the qubit system is prepared in the state
ρs ¼ ð1þ r⃗s · σ⃗Þ=2, the distributions of the measurement
outcomes are given by Pð�jMiÞ ¼ ½ð1� m⃗i · r⃗sÞ=2�. The
most general measurement of a qubit observable with two
outcomes is described by the positive-operator-valued
measures (POVM) Ω ¼ fΩ�g with Ω� ¼ f½1� ðxþ
ω⃗ · σ⃗Þ�=2g, which is normalized, Ωþ þΩ− ¼ 1, and non-
negative, Ω� ≥ 0, as long as jxj þ jω⃗j ≤ 1, where ω⃗ is the
Bloch vector and jxj stands for the biasedness. The triplet
M are unbiased and are incompatible. A set of general
qubit observables are compatible, or jointly measurable, if
there exists a parent POVM Rp with multiple outcomes
such that each observable in the given set arises as a
marginal measurement or equivalently from a postmeasure-
ment processing [56].
We approximate fMig via the implementation of com-

patible POVMs fNig, respectively. It was shown in an
earlier work that the necessary and sufficient conditions for

three unbiased qubit observables to be compatible, i.e., with
vanishing biasedness x, is given by [51]

X3
k¼0

jp⃗k − p⃗fj ≤ 4; ð1Þ

where p⃗k ¼
P

3
j¼1 γjkm⃗j with γjk ¼ ð−1Þkbj=2cþjbk=2c and

p⃗f is the Fermat-Torricelli (FT) point of fp⃗kg3k¼0, i.e.,
the vector that minimizes the left-hand side in the
above inequality.
A measurement N1 as an approximation toM1 alters the

state of the system so that a subsequent measurement N2

approximates M2 with limited accuracy if M1 and M2 are
incompatible. Similarly, a subsequent measurement N3

approximates M3 with limited accuracy if M2 and M3

are incompatible. This scheme is a special case of joint
measurement and the measure of disturbance is an instance
of an approximation error [14]. Defining the combined
approximation errors as Δρ ¼

P
3
i¼1 dρðMi;NiÞ, where

dρðMi;NiÞ ≔ 2
P

� jPð�jMiÞ − Pð�jNiÞj, we arrive at
the state-independent measure of incompatibility

ΔM ≔ min
N

max
ρ

Δρ: ð2Þ

This worst-case estimate of the inaccuracy characterizes the
overall performance of the measurement device.
An elegant lower bound of ΔM was proposed in [53]

under the strong presumption that the optimal measure-
ments are unbiased. Here considering the most general
form of jointly measurable triplet, we strengthen this
measurement uncertainty relation by proving that the
optimal measurement is actually unbiased [57].
Theorem 1.—(Triplet measurement uncertainty relation)

For the most general measurements fNig that are jointly
measurable, their errors of approximation relative to a
triplet of ideal qubit observables M ¼ fm⃗i · σ⃗g3i¼1 are
tightly lower-bounded as follows:

ΔM ≥
1

2

X3
k¼0

jp⃗k − p⃗fj − 2 ≔ 2δ; ð3Þ

where fp⃗k ¼
P

j γjkm⃗jg with p⃗f being its FT point. The
lower bound is saturated if and only if δ ≤ minkjp⃗k − p⃗fj.
If the condition is met, the optimal set of jointly measurable
triplet reads n⃗j¼ m⃗jþðδ=4ÞP3

k¼0 γjk½ðp⃗f− p⃗kÞ=jp⃗f− p⃗kj�
(k ¼ 1, 2, 3).
As examples of attainability, the triplet with mutually

orthogonal Bloch vectors, e.g., Mo ¼ fσ⃗ cos γg, can attain
the equality, i.e., the measurement uncertainty relation
[Eq. (3)] is optimal for γ ≤ arccosð1= ffiffiffi

3
p Þ ≈ 54.74°, for

which Mo is incompatible. In general, the measurement
uncertainty relation [Eq. (3)] cannot be attained, for example,
coplanar triplet Mp with degenerate FT point [51], i.e.,

PHYSICAL REVIEW LETTERS 131, 150203 (2023)

150203-2



p⃗f coincides with some p⃗k. In these cases, the exact value
of incompatibility ΔM can be calculated via a convex
programming.
Protocol 1.—(Convex programming) The exact value

of incompatibility ΔM for a triplet fm⃗jg of ideal observ-
ables is given by the solution to the following convex
optimization:

min
Rp¼fRjg

2 max
k∈ f0;1;2;3g

�����
X3
j¼1

γjkðm⃗j − n⃗jÞ
�����;

subj to Rj ≥ 0; ðj ¼ 1; 2;…; 8Þ;
X
j

Rj ¼ I; ð4Þ

with fn⃗jg being the Bloch vectors for three marginal
measurements fNig3i¼1 of Rp.
Besides the exact value of incompatibility ΔM, the

convex programming critically yields the respective general
measurement Rp and the optimal qubit state. Because the
optimal measurement always lies on the boundary, i.e.,
saturating the joint measurement condition Eq. (1), we can
accomplish the optimal joint measurement in a single-qubit
experiment [15] as follows:
Theorem 2.—(Implementation) A jointly measurable

triplet of unbiased qubit observables fNig that saturates
the joint measurement condition Eq. (1) can be implemented
by the following parent measurement fRμkjk ¼ PkOμkjkg,
where

Pk ¼
jq⃗k − q⃗fj

4
; Oμkjk ¼

1

2

�
1þ μk

q⃗k − q⃗f
jq⃗k − q⃗fj

· σ⃗

�
; ð5Þ

with binary outcomes labeled with μk ¼ �1 for each k ¼ 0,
1, 2, 3, and q⃗f is the FT point of fq⃗kg. We obtain the
marginal measurements, Nμjj ¼

P
k;μk pjðμjk; μkÞRμkjk with

postmeasurement processing pjðμjk;μkÞ¼ ½ð1þμγjkμkÞ=2�,
where j ¼ 1, 2, 3 and binary outcomes are labeled with
μ ¼ �1.
The above discussion essentially lays down an exper-

imental protocol, following which we showcase below
several experimental demonstrations of attaining the lower
bound of the triplet measurement uncertainty relation.
Experiment.—The experimental schematics is depicted

in Fig. 1. In order to prepare the single-photon qubit,
we send a laser pulse with λp ¼ 779 nm to a piece of
periodically poled MgO doped lithium niobate (PPLN)
crystal, where the induced type-0 spontaneous parametric
down-conversion (SPDC) process creates a pair of photons
at the phase-matched wavelengths of 1560 (signal) and
1556 nm (idler) [58]. We detect the idler photon to herald
the presence of a signal photon. Encoding qubit to the
polarization state of the signal photon, we use a pair of
half- and quarter-wave plates (HWP, QWP) to prepare the
optimal qubit state, jΦis ¼ cos αjHis þ eiϕ sin αjVis, as
prescribed by Protocol 1, where α=2 is the angle of the fast
axis of a HWP oriented from the vertical, ϕ is the phase,

(a) (b)

(c)

FIG. 1. Experimental optimal joint measurement on triplets of qubit observables. (a) An illustration to approximate measurements
fMig via the implementation of compatible measurement fNig, where the combined approximation errors fΔρðMi; NiÞg are maximized
over all input quantum states ρs and minimized over all triple jointly measurable observables. (b) A schematics of experimental optimal
joint measurement on triplets of qubit observables. We generate a pair of correlated photons with λsignal ¼ 1556 nm and λidler ¼
1560 nm via the type-0 spontaneous parametric down-conversion process by pumping a periodically poled MgO doped lithium niobate
(PPLN) crystal with a laser light at λp ¼ 779 nm [58]. The detection of a signal photon heralds the presence of an idler photon. With
qubit encoded to the polarization state of the idler photon, we install four polarization-projective detection modules to conduct
measurements fMig and fOkg with variable beam splitter (VBS) to adjust the weight, respectively (see Supplemental Material [59] for
details). (c) A realization of VBS with adjustable beam-splitting ratio.
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and jHis and jVis stand for horizontal and vertical
polarization states, respectively.
Next, we conduct measurements fMig and fRμkjk ¼

PkOμkjkg. We note that both measurements fMig and fOkg
are single-photon polarization-projective measurements in
this study. We install four sets of single-photon polariza-
tion-projective measurement modules. In each module, we
pass the single photon through a QWP, a HWP, a fiber-
polarizing beam splitter (FPBS), and feed the outputs of
FPBS to single-photon detectors. Employing variable beam
splitters (VBS), we, respectively, implement measurements
fMig and measurements fOkg with weight fPkg to obtain
measurement statistics, from which we derive the combined
approximation errors (see Supplemental Material [59]).
We investigate the optimal joint measurement on triple

ideal qubit observables for a few selected scenarios,
(i) triplet Mo ¼ fσZ; σY; σXg cos γ with Bloch vectors
pairwise orthogonal; (ii) triplet M⊥¼fσX cosγþσY sinγ;
σX cosγþσY sinγ;σZg with one Bloch vector orthogonal
to the plane spanned by the other two; (iii) co-planar
tripletMp ¼ fσX cos γ þ σY sin γ; σX cos γ − σY sin γ; σXg;
and (iv) tripletMY ¼f½ð−σXþ

ffiffiffi
3

p
σYÞ=2�;½ð−σX−

ffiffiffi
3

p
σYÞ=

2�;σXgsinγþσZ cosγ with Bloch vectors being neither
orthogonal and nor pairwise co-planar. The results are
plotted, respectively, in Figs. 2(a)–2(d), with angle param-
eter γ ∈ ½0°; 90°�. We draw the lower bounds on the right-
hand side (rhs) of Eq. (3) with blue smooth lines, the
attainable lower bounds obtained from the convex optimiz-
ing program (Protocol 1) with red dashed lines, and
experimental results with open dots.
Some remarks are in order. First, comparing the red

dashed lines and blue lines, it is evident that the measure-
ment uncertainty relation of Eq. (3) is optimal, i.e., with
attainable lower bound, for the entire parameter range of γ
in scenario (i) and for parts of the parameter range in (ii)
and (iv), and not optimal, i.e., with rhs smaller than that
of the attainable lower bound found by Protocol 1, for the
other parts of the parameter range in (ii) and (iv) and the
entire parameter range in (iii). We note that the region of γ
that attains the measurement uncertainty relation can be
determined by Theorem 1. Second, experimental results
are consistently in good agreement with numerical results
obtained via Protocol 1 for all scenarios under study,
i.e., we experimentally attain the exact value of incompat-
ibility ΔM. This justifies the strategy of accomplishing
the optimal joint measurement with single qubit given in
Theorem 2. We note that one can find analytically the
incompatibility measures which coincide with the numeri-
cal results for triplets exhibiting certain symmetry [57].
Discussion.—It has been shown that for a pair of

compatible observables that are employed to approximate
the ideal measurements, joint measurement can be imple-
mented by sequential measurements [55,60,61]. However,
this equivalency for three or more observables is not
known, i.e., it is not clear at all that whether optimal joint

measurable triplet can be measured sequentially. We shall
show below that in two types of triplets considered
here, namely, the orthogonal triplet Mo and the triplet
M⊥ with one observable being orthogonal to the other
two, the optimal joint measurements can be implemented
sequentially.
Consider a sequential measurement N1 → N0

2 → N0
3 of

three compatible observables fNkg as shown in Fig. 3,
where N0

2 and N0
3 are two properly chosen measurements

performed on the disturbed states. We perform measure-
ment N1 first and then measurement N0

2 (different from N2,
in general), which is followed by another properly chosen
unbiased measurement N0

3. The postmeasurement state at
each stage of measurement reads

ρ →
X
μ

N
1
2

1;μρN
1
2

1;μ →
X
μ;ν

N
01
2

2;νN
1
2

1;μρN
1
2

1;μN
01
2

2;ν:

In this way we actually have performed the following joint
measurement:

FIG. 2. Exact value of incompatibility of 4 triplets of idea qubit
observables: (a)Mo, (b)M⊥, (c)Mp, (d)MY . Red dashed lines
are numerical results calculated with protocol 1, blue smooth
curves are lower bound of incompatibility in Eq. (3), and red
triangles represent experimental results. Error bars stand for 1
standard deviation.
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Mμντ ¼ N
1
2

1;μN
01
2

2;νN
0
3;τN

01
2

2;νN
1
2

1;μ ð6Þ

as long as the marginal conditions are satisfied. For an
example we consider orthogonal triplet N o¼fn⃗j · σ⃗g
with mutually orthogonal measurement directions, i.e.,
n⃗j · n⃗k ¼ 0 for j ≠ k. To implement a sequential measure-
ment of form Eq. (6) we measure at first observable N1

with Bloch vector n⃗1 and then we choose the two
sequential measurements to be unbiased and have the
following Bloch vectors:

n⃗02 ¼
n⃗2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n⃗21

p ; n⃗03 ¼
n⃗3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − n⃗21 − n⃗22
p :

These Bloch vectors correspond to legit qubit measure-
ments because of the joint measurement conditionP

k n⃗
2
k ≤ 1. In a more general case of triplet N ⊥ with

one observable orthogonal to the other two, the joint
measurement can also be implemented sequentially (see
Supplemental Material [59]). Thus the tripletsMo andM⊥,
from the discussions above, can be optimally measured in a
sequential manner. Notably, the disturbance induced by the
first and second measurement is contained in the errors
for the second and third observables from the sequential
measurement point of view. The equivalency between the
joint measurement and sequential measurement for a general
triplet still awaits for a future investigation.
Summary.—Some quantum measurements disturb

each other, preventing us from measuring them with a
single measurement device without introducing errors.
The MUR sets the limit to how well we can perform the
joint measurement with the minimal amount of errors
according to quantum mechanics. In this Letter, we
establish the MUR for triplets of qubit observables.
Employing the convex programming, we find the exact
value of the incompatibility measure and the optimal
measurements to saturate the MUR. This guides us to
accomplish the optimal joint measurements on triplets of
qubit observables for the first time. The demonstrated

strategy is universally applicable to the study of many
qubit observables and the case of weighted measurements,
which will be considered elsewhere. As a critical step in the
study of multiple incompatible quantum measurements,
this work may deepen our understanding of Heisenberg’s
uncertainty principle and lead to innovative applications in
quantum metrology and quantum information science.
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