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We present a general class of entanglement criteria for continuous variable systems. Our criteria are
based on the Husimi Q distribution and allow for optimization over the set of all concave functions
rendering them extremely general and versatile. We show that several entropic criteria and second moment
criteria are obtained as special cases. Our criteria reveal entanglement of families of states undetected by
any commonly used criteria and provide clear advantages under typical experimental constraints such as

finite detector resolution and measurement statistics.
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Introduction.—Entanglement is an intrinsic quantum
phenomenon and indispensable for quantum technologies.
Among the many physical platforms used for quantum
computing and simulation, systems described by continu-
ous variables such as photonic systems [1-6] and cold
quantum gases [7-14] are gaining importance. As entan-
glement is central to questions of, e.g., quantum thermal-
ization [15,16], information scrambling [17,18], quantum
supremacy [19], metrology [20,21], and quantum phase
transitions [22], efficient tools for its detection are crucial
for the understanding of quantum phenomena.

The quest for entanglement criteria has a long history in
the quantum optics literature, starting from early works by
Duan, Giedke, Cirac, and Zoller (DGCZ) [23], Simon [24],
and Mancini, Giovannetti, Vitali, and Tombesi (MGVT)
[25,26], who formulated entanglement criteria based on the
variances of measured field quadratures, which are neces-
sary and sufficient for Gaussian states [27-30]. The
intuitive reasoning underlying all of these criteria is that,
for separable states, the fluctuations in pairs of nonlocal
variables, like X; + X, and P, — P,, are lower bounded by
the uncertainty principle, while these bounds can be
submerged for entangled states [31]. Later, these criteria
were refined by quantifying uncertainty through entropies
of measured distributions of the field quadratures, i.e.,
marginals of the Wigner function, by Saboia, Toscano, and
Walborn (STW) [32-35], and others [2,36]. Other methods
for certifying continuous variable entanglement use modu-
lar variables [37,38], higher moments [39,40], specific
algebras [41] or information theoretic quantities [42—44].

Here, we derive a general class of entanglement criteria
based on the Husimi Q distribution [45-47]. The key
ingredient of our approach is that for the Husimi Q

0031-9007/23/131(15)/150201(7)

150201-1

distribution, in contrast to the Wigner distribution, the
uncertainty principle can be stated in a strikingly general
way, formalized by the Lieb-Solovej theorem [48,49].
Combining this with the Peres-Horodecki criterion
[31,50,51] yields a separability bound for any concave
function, generalizing our previous results on Husimi-Q-
based witnesses [52]. We showcase the strength of these
criteria by giving examples where they outperform pre-
viously known criteria and demonstrating advantages for
experimental entanglement detection. An extended discus-
sion is provided in [53].

Notation.—We work in natural units 72 = 1. We denote
quantum operators by bold letters, e.g., p1,, and vacuum
expressions with a bar, e.g., 0.

Phase space distributions.—We consider a bipartition of
a continuous variable quantum system described by oper-
ators X; and P; fulfilling bosonic commutation relations
[X;, P = i6; 1 with j,ke{1,2} denoting the two sub-
systems. We allow for local rotations 9; € [0, 27) yielding

rotated quadratures
R; cosd;  sind; X; .
S;)  \-sind; cosd;)\P;) (n)
Their bosonic commutation relations induce sets of local co-
herent states |a;) =D(a;)|0;) :e"fa}_“;“f|0j>, where D(a;)
denotes the canonical displacement operator acting on the
vacuum state |0;) [54-56]. Here, a; = (R; + iS;)/\/2 and
f

a; = (R; —iS;)/ V2 are local creation and annihilation

operators, respectively, while a; = (r; + is;)/ v/2 denotes
the complex-valued phase.

© 2023 American Physical Society


https://orcid.org/0000-0003-1914-7099
https://orcid.org/0000-0003-1477-9855
https://orcid.org/0000-0002-8025-4881
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.150201&domain=pdf&date_stamp=2023-10-12
https://doi.org/10.1103/PhysRevLett.131.150201
https://doi.org/10.1103/PhysRevLett.131.150201
https://doi.org/10.1103/PhysRevLett.131.150201
https://doi.org/10.1103/PhysRevLett.131.150201

PHYSICAL REVIEW LETTERS 131, 150201 (2023)

As coherent states resolve the identity 1;=
J(drds/2x)|a;)(a;|, one can associate a positive opera-
tor-valued measure (POVM) to pure coherent state projec-
tors, realizable through heterodyne measurements, leading

to the bipartite Husimi Q distribution [45,49,57,58]

O(r1,51,72,52) = ({1 @ (| )pia(loy) ® ). (2)

Since coherent states overlap, the Husimi Q distribution
violates Kolmogorov’s third axiom and has to be considered
as a quasiprobability distribution covering phase space. Never-
theless, itis bounded (0 < Q < 1) and normalized in the sense
that [(drids,/2n)(dryds,/2m)Q(r.51,72,5,) =1.

|

ry4+ro s +Ss_ rp—r_ sy —s_

We study correlations between the two subsystems with
general nonlocal operators [23,26,59],

R. = aR| £ a;R,, Si =081 £5S,, (3)
with real and non-negative scaling parameters aj,a,,
by, by > 0 such that a;b; = a,b,, which fulfill the com-
mutation relations

[R..S.]=i(aby + ab,)1, R..S:]=0, (4)
showing that pairs of operators with equal indices obey

bosonic commutation relations up to normalization. By
performing a variable transformation in (2) we obtain

O(ry.s,.ro.s-)

where the prefactor ensures
J(drds,/2x)(dr_ds_/27)Q(r.s,.r_,s_)=1. We mar-
ginalize the latter over the mixed pairs (r_, s, ) or (r,,s_)

dryds

Q.= Q(ri’s$) = / o

Q(r+,s+,r_,s_), (6)

resulting in distributions over the variables (r,s+). We
will show in the following that these distributions are
nontrivially constrained for all separable states.

Entanglement criteria.—A well-known necessary con-
dition for the separability of a given state p,, is the Peres-
Horodecki (PPT) criterion [31,50,51]. Every separable state
has a non-negative partial transpose, i.e., the operator p/,
obtained fromp, — p}, = (1; ® T,)(p;) is non-negative
P, >0, where T, denotes partial transposition in sub-
system 2. Hence, p/, is physical for all separable states,
implying that derived distributions are constrained by the
uncertainty principle. In the case of the Husimi Q distri-
bution, this is most generally expressed by the Lieb-Solove;j
theorem [48,49]. Ultimately being a majorization relation
in phase space [60], it states that

[ [0, 7)

2w 2

for all concave f:[0, 1] -» R with £(0) =0.

In phase space, the partial transpose 7, has a simple
geometric representation. It corresponds to a sign change in
the momentum type variable s, — —s, [24]. Following (3)
this implies s, — s+ and hence Q(ry,s.) = O(ry, s+).
Then, the PPT criterion implicates that the Lieb-Solove;j
theorem (7) has to be fulfilled with respect to the vacuum in
the variable pairs (r, s+ ) affer partial transposition for all
separable states. Defining the witness functional

1
_4a1a2b1b2 <

b b b b 5
Zal Zbl 2a2 2b2 > ( )
|
normalization drds _
W= [0 - s, ®
where
_ 1 At
O (re,s5) = ab b’ 2abitah )

and f: J —R with 7=[0,max{maxQ,(a,b, +a,b,) "' }|C
R* is a concave function with f(0) = 0 [61], allows us to
state our main result: 1V, is non-negative for all separable
states, i.e.,

P12 separable = W, > 0, (10)

forall f under the assumptions stated above. Violation of the
latter inequality for any choice of the concave function f, the
rotation angles 9, 9,, or the scaling parameters a, by, a,, b,
with a,b; = a,b,, implies that p;, is entangled. In the
remainder of this Letter, we show advantages offered by the
freedom of using any concave function f.

Entropic  criteria—The condition W, >0 remains
valid when applying a monotonically increasing function
g:R — R to both integrals in (10), which allows to recover
families of entropic criteria. For monomials f(¢) = #* with
pe€(0.,1) and g(r) = [1/(1 — )] Int we find

Ing  Indet V',

Wy = S5(0-+) Tho1

>0, 11
=20, (1)

where

1 drid
$(02) =Ly | [ 582 Qs (12)
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denote Rényi-Wehrl entropies [62] and V. = (a;b, +
a,b,)1 is the covariance matrix of the vacuum Q’,. The
latter extends to € (1, 00) as for the convex function —f a
monotonically decreasing function g restores the overall
non-negativity of the witness. In the limit f — 1 (12)
reduces to the ordinary Wehrl entropy [63,64] and the
witness functional (11) boils down to the entropic criteria
reported in [52] for a; = b; = a, = b, = 1, a fact which
also follows directly from (10) with f(7) = —¢Int.

Second moment criteria.—Starting from the covariance
matrix of the marginal O, of an arbitrary Husimi Q
distribution

2,2
2 as+a
Or, + Tz Or.s
V:t - i ’ (13>
b2 4b3

2
(7ris¥ 6& + 2

2 2
where 67, 05

the Wigner W distribution, we find second moment criteria
from (11) in the limit § — 1,

and o, ;_ denote the second moments of

Waery, = det Vo —det V!, >0, (14)

as §1(0Q4) < 1+31IndetV_ for all Q. with fixed V. For
Gaussian states with a Husimi Q distribution of the form
(we consider centralized states w.l.o.g.)

1 _
Q.(ry.s4) = Ze—i(ri’sn;)TVQ(’i»&), (15)

where Z =det'/2V_ is a normalization factor, the
criteria (10) are equivalent to the second moment criteria
Waerv, 2 0 for all concave f with f(0) = 0 (see [53] for a
proof). Therefore, the second moment criteria (14) are
optimal in the sense that no stronger bound on det V. can
be implied from (10) as this would be in contradiction with
the latter equivalence in case of Gaussian distributions.
Taking f(f) # —tInt and maximizing the witness func-
tional W over Q. for fixed V. can only lead to weaker
second moment criteria.

We compare (14) to the DGCZ and MGVT criteria for
fixed a;, by, a,, b, in Fig. 1. Our criteria imply the DGCZ
criteria and hence are necessary and sufficient for sepa-
rability in case of Gaussian states (when optimized over aj,
a,, by, by). After appropriate optimizations our criteria and
the MGVT criteria are equivalent (see [53]).

Example state.—We benchmark the Rényi-Wehrl
criteria (11) against the STW criteria [33], i.e., the
strongest entropic criteria based on marginal distributions
Fi(re), g+(s5),

FIG. 1. Comparison of witnessed regions of second moment
criteria for the general Gaussian distribution (15) with covariance
matrix (13) and a; = by = a, = b, = 1 together with the allowed
region from non-negativity of the Wigner covariance matrix
(gray). The green region is detected by all three, but the DGCZ
criteria fail beyond. The yellow region is witnessed by both the
MGVT and our criteria, while the blue (red) regions are only
witnessed by the MGVT (our) criteria, respectively. See also [53].

In det V'
Wsrw = So(f+) + Sp(9+) — #i
1 s a
L WY AT S, P |
aoptr ety (19

with the marginal Rényi entropies being constrained by
I/a+ 1/ =2. We consider the non-Gaussian state
described by the wave function [32,33,41,65-67]

rtn e—i[(%)z+(%)z}

w(rirn)=—F— :
(o) =

which is entangled for all 6,.,0_ >0. We choose
a; =b; =a, = by, =1, and allow for an arbitrary angle
¢ €10,2x) in the (r,., s+ ) variables [68] and equal amounts
of local squeezing leading effectively to squeezing = =
diag(¢,1/¢) with &> 0 in the (ry,sy) variables (see
Ref. [53] for explicit expressions).

In Fig. 2 we compare the witnessed regions of (11) (red)
and (16) (blue) after optimization over the entropic orders
in terms of ¢, ¢_ for three characteristic choices of ¢ and &
reflecting the different invariances of the two sets of
criteria. The straight curves correspond to ¢ =0, £ =1,
while the dashed and dotted curves show (11) for & = 3/2
and (16) for ¢p = z/4, respectively. We observe that after
optimizing over &, our Rényi-Wehrl criteria (11) witness
entanglement for all values of 6, # o_ (equality indicated
by gray dashed line) in the limit # — 0. In contrast, the
STW criteria (16), which witness entanglement only for
o_jo, >rn/4ando_/o, <4/xwhen¢p =0anda — 1/2
[33], can only be weakened by improper alignment of the

(17)
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FIG. 2. Comparison of witnessed regions of optimal Rényi-
Wehrl criteria (11) (red) and optimal STW criteria (16) (blue) for
the state (17) with ay =by, =a, =b, =1 and ¢p =0, £=1
(straight), ¢ =0, £ =3/2 (dotted), ¢ = x/4, £ =1 (dashed).
Our Rényi-Wehrl criteria (11) outperform the STW criteria (16)
as after optimizing over £ we can witness entanglement for all
0, # o_ (gray dashed line). See also [53].

coordinate axes ¢ > 0 (in which case the optimal a differs
in general).

Instead, for genuinely non-Gaussian states characterized
by higher-order correlations or negativities in their Wigner
W distributions (for example NOON states), the linear
non-local variables (3) typically fail to accurately capture
entanglement. This applies to all criteria of such type,
e.g. [23-26,32,33], and thus also to our criteria (10)
(see, e.g., gray dashed line in Fig. 2 representing the first
NOON state).

Discretized distributions.—We incorporate the effect of
finite resolution, which is relevant for coarse-grained
measurements [2,34,36,53,69,70], by discretizing phase
space into rectangular tiles §;; according to

ri = jory, sk = kSs, (18)
where j, k € Z label the discrete coordinates (r"i, s’;), such
that A = 6r.6s+/(27) denotes the phase space area
element of the (j,k)th tile 6; centered at (r’is’;) and
hence 6, = [6r(j—1/2),6ry(j+1/2)] x [6s£(k=1/2),
ds(k+1/2)]. The resolution factors 7., J_ are propor-
tional to their local analogs, i.e., the resolutions of the local

detectors. The probability of observing an event within the
(j, k)th tile is given by

; dr.d
o = [ o s) (19

Jj

which is a discrete quasiprobability distribution normalized

to unity in the sense that ka:_w Q{f =1.

Discrete measures of localization such as variance and
entropies can underestimate their true continuous values,
potentially leading to false-positive demonstrations of
entanglement if taken as estimates for their continuous
analogs [71]. Therefore, uncertainty relations and entan-
glement criteria are formulated for discrete approxima-
tions of the true continuous distributions [34,69,72]. The
distribution Q (r., s+) is approximated by the density of
(19) over every tile

o thk
02 =04(re55) = ) {T (res2) €00 (a0)

jhk=——o VO else,

such that [(dryds./2m)Q%(ry,s+)=1and Q% (ry,s5)—
Q. (ry,s+) in the continuum limit A — 0. In [53] we prove
the inequality

dryds
< WA — T
We W / o=

implying that all separable states fulfill (weaker) criteria
W]% > 0 for coarse-grained measurements. As VW, and W.?

[F(Q8) - f(QL)).  (21)

are of the same form and Q% is a quasiprobability density
function, the arguments leading to entropic (11) and second
moment criteria (14) hold for Q4 as well, giving us their
analogs for the continuous approximation Q% . Note that all
these findings can be generalized to arbitrary discretization
schemes (see Ref. [53]).

These discretized criteria never return false positives, but
witnessing entanglement is hindered for larger tilings.
Optimizing over f substantially improves the detection
capabilities, which we illustrate in Fig. 3 for the exper-
imentally relevant case of a two-mode squeezed vacuum

1
08 b
oo

~ P
0] e

o 7’ .
N A A
02_4'.'/ ........ ,,,,,,,, ,,,,,,, e PN
: ' Wi, Wi Wiy
0 i i 1 1
o 1 2 3 4 5 6 7

6

FIG. 3. Witnessed regions of discretized second moment (gray
dotted), Wehrl entropic (black dashed) and optimal Rényi-Wehrl
entropic (orange solid) criteria for a TMSV state of given
squeezing A as a function of the grid spacing §. Optimization
over f# enables entanglement certification for much larger tilings.
See also [53].
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(TMSV) state and fixed quadratic tiles 5 = §r, = 5s% with
0 being proportional to the local detector resolution, by
plotting the witnessed regions of the second moment (gray
dotted), Wehrl entropic (black dashed) and the optimal
Rényi-Wehrl entropic (orange solid) criteria for every
squeezing A€ [0, 1] as a function of the grid spacing &.
Although the underlying distribution is of Gaussian form,
the optimization over f greatly enlarges the detected region
especially for small squeezings (4~ 0.2), which is the
regime where entanglement detection is typically most
challenging in experiments.

Sampled distributions.—Finally, we consider the exper-
imentally relevant scenario where entanglement is to be
certified on the basis of a small number of experimental
samples drawn from the Husimi Q distribution [73,74]. The
goal here is to maximize statistical significance, i.e., the
signal-to-noise ratio with which entanglement is detected.
The estimation of functionals of probability density func-
tions from samples, needed for evaluating our entanglement
criteria (10), is a challenging task in statistical data analysis.
It generally requires density estimation of the underlying
distribution, while low moments can be estimated directly
from the data. Nevertheless, for non-Gaussian states unde-
tectable by second moment criteria (generalized) entropic
criteria may be the only way of certifying their entangle-
ment. We show that a suitable choice of the function f in our
criteria can lead to an increased signal-to-noise ratio.

We consider 10° samples from a weighted mixture of
two displaced TMSV states with Husimi Q distribution

1+4 i [(ri—r)2+sgt]

Qi(re,s:)=(1-p) e
+p 1 ;—ﬂ e_uﬂ [(ri+r)2+sz¢] ’ (22)

for opposite displacements r = 42, equal squeezings 4 =
0.8 and an unbalanced weight p = 0.3 [75]. We estimate

0.1
0 |
~0.1}
« 0205
0317
—0.4}"
_05)
~06

FIG. 4. Mean and confidence intervals of Rényi-Wehrl criteria
(11) over S for 10* samples estimated from 10? repetitions for a
mixture of TMSV states. For large f~ 10 the tails of the
estimated distribution are suppressed and entanglement is certi-
fied with large confidence. See also [53].

the distribution using a Gaussian mixture model (see
Ref. [53] for details), evaluate the family of Rényi-Wehrl
criteria (11) for a range of f#-values with a; = b, = a, =
b, = 1 and repeat this procedure 10 times in order to
estimate confidence intervals. The results are shown in
Fig. 4, indicating that large f ~ 10 allows for entanglement
certification within significantly larger confidence intervals
compared to the standard entropic criteria  — 1. The
reason for this improvement is that for large f the influence
of regions of small probability, which incur the largest
statistical error due to sparse samples, is suppressed.
Surprisingly, also f# <« 1 yields a reduced statistical error.
We attribute this to the prior knowledge about the func-
tional form of the tails of the distribution that is built into
the employed Gaussian mixture model.

Conclusions and outlook—We have shown that our
Husimi-Q based entanglement criteria outperform marginal
based criteria in many respects. We emphasize that the
Husimi Q distribution completely characterizes a quantum
state, just like any other phase space representation, and
thus entanglement detection amounts to the task of efficient
extraction of the relevant information from the respective
measured data distributions. Here, our criteria excel by
offering vast opportunities of optimal classical postprocess-
ing. Our approach of using coherent state projections for
entanglement detection opens up a path towards deriving
general entanglement criteria for other physically relevant
systems such as quantum spins.
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