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Experiments over many decades are suggestive that the combination of cellular contractility and active
phase separation in cell-matrix composites can enable spatiotemporal patterning in multicellular tissues
across scales. To characterize these phenomena, we provide a general theory that incorporates active
cellular contractility into the classical Cahn-Hilliard-Larché model for phase separation in passive
viscoelastic solids. Within this framework, we show how a homogeneous cell-matrix mixture can be
destabilized by activity via either a pitchfork or Hopf bifurcation, resulting in stable phase separation and/or
traveling waves. Numerical simulations of the full equations allow us to track the evolution of the resulting
self-organized patterns in periodic and mechanically constrained domains, and in different geometries.
Altogether, our study underscores the importance of integrating both cellular activity and mechanical phase
separation in understanding patterning in soft, active biosolids in both in vivo and in vitro settings.
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Phase separation and its analogs, long known to be
important drivers of patterning in material systems [1], are
increasingly recognized as being a pervasive pattern-form-
ing mechanism in biological systems across scales, from
biomolecular condensates at the cellular scale [2,3] to tissue
morphogenesis in fibroblast aggregation [4], cartilage
condensation [5–8], nerve cord segmentation [9], and
somitogenesis [10].
In multicellular tissues, the focus of this Letter, an

experimentally well-studied case of patterning that has
many signatures of phase separation is that of precartilage
condensation [5–8], an integrated process involving bio-
chemical signal regulation, cell migration, cellular contrac-
tility, and extracellular matrix (ECM) deformation. An
example of this process is shown in Figs. 1(a) and 1(b)
associated with the formation of tracheal cartilage rings
in a mouse embryo [7]. Here, an initially homogeneous
mixture of (blue) cells and (pink) ECM transitions over a
few days and segregates into periodic patterns. Synthetic
analogs of this using reconstituted micromasses of cells
and ECM recapitulate these patterns that are accompanied
by cell contractility and separation of the cell and ECM
phases [11–13].
Over the past few decades, various mechanisms have

been proposed to explain patterning in these systems,
reviewed in [14], and fall into one of four broad categories:
Turing-like mechanisms based on differential diffusion,
chemotaxis-based processes that focus on cell movement in
response to chemokines, differential adhesion, and differ-
ential growth. However, these theoretical attempts do not
explain the salient observations of Harris et al. [4],
reproduced many times since, which we summarize here:

(i) visible evidence for phase separation of cells from the
ECM, (ii) a threshold initial fraction of contractile cell
fraction (or cell population density) for the process to
begin, (iii) a threshold of cell contractility before
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FIG. 1. Illustration of biological phase separation process. (a),
(b) In vivo condensation of tracheal cartilage rings of mouse
embryo at (a) early and (b) late stages [7]. (Scale bar: 300 μm is
estimated from [11].) The blue and pink regions are mesenchymal
cells and ECM, respectively. (c) Schematic of the cell-ECM
mixture. Initially homogeneous soft cells (blue) scattered in ECM
(gray) can contract and deform the viscoelastic biphasic mixture.
Cellular contractility and movement are indicated by red arrows,
and the gray color map denotes the local ECM fraction.
(d) Profiles of the cell fraction ρ and active contractility C at
(left) homogeneous and (right) patterned states.
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condensates are initiated, and (iv) the eventual saturation of
the instability to produce patterns that do not coarsen
continually. An exception is the work of Oster and
colleagues [5,6]; they proposed a biomechanical theory
with a critical threshold for cell contractility (which we will
calculate). While this can generate condensations, but they
did not frame this in terms of active phase separation, for
which there is now ample evidence.
Here, we generalize the Cahn-Hilliard-Larché frame-

work [15,16] for passive phase separation, now generalized
to account for active contractility. We show this schemati-
cally in Figs. 1(c) and 1(d), where cellular activity in a
biphasic mixture composed of a passive but stiff ECM
(gray) and scattered soft active cells (blue) can lead to phase
separation when the contractility overcomes the baseline
elastic resistance. We further note that unlike in classical
phase separation in liquid environments that continually
coarsens, here the balance between active cell contractility
and the passive elastic response of the ECM eventually
arrest coarsening, leading to nontrivial persistent patterns.
Active mechanical model.—We start with a consideration

of isotropic two-phase systems, composed of an active phase
representing mesenchymal cells that can generate active
contraction and a passive phase representing ECM. We
model the mixture as a viscoelastic solid capable of phase
separation and deformation. This biphasic system can be
described in terms of two fields that vary in space-time: the
cell fraction ρðx; tÞ and a displacement field uðx; tÞ.
Assuming no new production of the ECM, mass conserva-
tion implies that the ECM fraction is (1 − ρ). In terms of the
displacement field, we can also define the velocity field
vðx; tÞ ¼ ∂tuðx; tÞ; the strain ε ¼ ½∇uþ ð∇uÞT�=2, and the
strain rate ε̇ ¼ ½∇vþ ð∇vÞT�=2. To model the combined
effects of active cellular contraction, cell migration,
mechanical deformation, and a thermodynamic driving
force, we write the total free energy of the system as a
generalization of the classical Cahn-Hilliard-Larché model
for phase separation in an elastic solid [15–17] that now
reads as

Eðρ;uÞ ¼
Z
Ω

�
gCHðρÞ þ

1

2
σpðρ;ε; ε̇Þ∶εþ σaðρÞ∶ε

�
dx; ð1Þ

where gCHðρÞ ¼ 1
2
αρ2 þ 1

4
βρ4 þ 1

2
γj∇ρj2 is the free energy,

with α < 0, β > 0 defining the double-well potential, and
γ > 0 is the interfacial energy. The second and third terms in
the expression above correspond to the mechanical strain
energy due to the passive stress σp and the work done by the
active stress σa. The passive mechanical response of the
ECM-cell composite is assumed to follow the Kelvin-Voigt
model which for two-/three-dimensional linear viscoelastic
materials reads as

σp ¼ ½2GðρÞεþ λðρÞθI� þ ½2μ1ðρÞε̇þ μ2ðρÞθ̇I�; ð2Þ

where θ ¼ ∇ · u is the dilatation, and θ̇ ¼ ∇ · v is the dila-
tation rate. Here, the mechanical parameters of the mixture
are the shear modulus G, first Lamé coefficient λ, shear
viscosity μ1, and bulk viscosity μ2. Following linear mixture
theory [18], the mechanical properties are taken as a weigh-
ted average of each phase—i.e., ϕðρÞ¼ϕaρþϕpð1−ρÞ,
where ϕ ¼ E; ζ; G; λ; μ1; μ2, and the subscripts “a” and
“p” represent the active and passive phases, respectively.
The active stress σa, which can depend on many

biophysical variables is assumed to be contractile and
isotropic, and of the form σaðρÞ ¼ CfðρÞI, where C > 0
is the contractile amplitude, and fðρÞ has a saturating Hill-
type functional form [19]

CfðρÞ ¼ C
ρ2

1þ Kρ2
; ð3Þ

where the contractility monotonically increases with cell
fraction ρ∈ ½0; 1� within the range ½0; C=ð1þ KÞ�.
Then, given the form of the active stress and the

constitutive form for the solid, we may write the equations
for mass and momentum balance (neglecting the effects of
inertia) as

∂tρ ¼ −∇ · ðρvÞ þD∇2

�
δE
δρ

�
; ð4Þ

−
δE
δu

¼ ∇ · ðσp þ CfðρÞIÞ ¼ ηv: ð5Þ

Here, D is the cellular diffusivity, δE=δρ ¼ μ is the
chemomechanical potential, and η is the effective fric-
tional coefficient associated with movement relative to a
background.
Linear stability analysis.—To illustrate the essential

aspects of the active biphasic system, we start with a
simple one-dimensional problem [Ref. [20], Sec. II.
Eq. (S4)], where the mechanical parameters are the elastic
modulus E and viscosity ζ. After rescaling the governing
variables using a characteristic length l ¼ ffiffiffiffiffiffiffiffiffi

ζp=η
p

and time
τ ¼ ζp=Ep, we can write the mass and force balance
equations (4) and (5) as

∂tρ¼−∂xðρvÞþD̃∂xx

�
α̃ρþ β̃ρ3− γ̃ρxx

þ C̃f0ðρÞuxþ
1

2
ðẼa−1Þu2xþ

1

2
ðζ̃a−1Þuxvx

�
; ð6aÞ

v ¼ ∂x½ẼðρÞux þ ζ̃ðρÞvx þ C̃fðρÞ�; ð6bÞ

where the dimensionless physical quantities are denoted
with an upper tilde (see Ref. [20], Sec. II, Table S2). The
dimensionless parameters in the model include the scaled
domain size L̃ ¼ L=l, the ratio of elastic moduli
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Ẽa ¼ Ea=Ep, the ratio of viscosities ζ̃a ¼ ζa=ζp, the chemi-
cal potential parameters α̃, β̃, and γ̃, as well as the scaled
diffusivity D̃ ¼ Dη, and the scaled contractility C̃ ¼ C=Ep.
Of these, the critical parameters are the last two (see
Ref. [20], Sec. III A for details of the other parameters).
We next carry out a linear stability analysis of the

homogeneous steady-state solutions of (6) with a uniform
fraction of active cells ρ ¼ ρ0 in a stationary medium
u ¼ v ¼ 0. Assuming small perturbations of the active cell
fraction and displacement written as a superposition of
Fourier modes ðδρ; δuÞ ∝ exp ½ωntþ iknx�, where ωn is the
growth rate and kn ¼ 2πn=L̃ is the wave number of each
mode n, we substitute these into Eqs. (6a) and (6b). This
yields the dispersion relation ωn ¼ ωðk2nÞ as

ωðk2nÞ¼
1

2aðk2nÞ
h
−bðk2nÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðk2nÞ2−4aðk2nÞcðk2nÞ

q i
; ð7Þ

with bðk2nÞ and cðk2nÞ are algebraically complex functions
of the wave number [Ref. [20], Sec. III. Eq. (S17)], and
aðk2nÞ ¼ ½1þ ζ̃ðρoÞk2n�=k2n > 0. We see that instability sets
in when bðk2nÞ < 0 or cðk2nÞ < 0.
In the absence of diffusivity—i.e., when D̃ ¼ 0—

increasing contractility can trigger a supercritical pitchfork
bifurcation. To understand this [see Ref. [20], Sec. III,
Eq. (S15)], we see that the displacement follows the simple
equation ∂tδu¼ ½ρ0C̃f0ðρ0Þ− Ẽðρ0Þ�=aðk2nÞδu. Thus, small

perturbations will decay or grow depending on the imbal-
ance between the stabilizing elastic and destabilizing
active stresses; when the scaled activity C̃ > C̃cr ¼ Ẽðρ0Þ=
½ρ0f0ðρ0Þ�, the growth rate is purely real and positive for all
wave numbers. We note that C̃cr decreases monotonically
with the initial (uniform) cell fraction ρ0 [Fig. 2(a), red line].
The dominant wave number at the onset of the instability is
given by [see Ref. [20], Sec. III, Eqs. (S17)–(S21)]

k2cr ¼ ð1=γ̃Þ½C̃2f0ðρ0Þ2=Ẽðρ0Þ − ðα̃þ 3β̃ρ20Þ�: ð8Þ

We see that active contraction favors small wavelengths
while the elasticity prefers long wavelengths, but in either
case the critical wave number is inversely proportional to
the interfacial energy—i.e., kcr ∼ 1=

ffiffiffĩ
γ

p
(see Ref. [20],

Sec. V, Fig. S6).
With nonvanishing diffusivity of the active cells, either a

Hopf or pitchfork bifurcation can occur. In Fig. 2(b), we see
three quantitatively different regions in the phase diagram
spanned by ρ0 and C̃: region I is pattern-free, region II
corresponds to unstable modes with purely real eigenvalues
(stationary phase separation), and region III corresponds to
unstable modes with complex eigenvalues (traveling waves
of phase separation). Furthermore, we see that the critical
contractility C̃cr for a pitchfork bifurcation when D̃ ¼ 0

[see Figs. 2(a) and 2(b)] is larger than that when D̃ ≠ 0
because the driving force due to the Cahn-Hilliard chemical

FIG. 2. Phase diagrams in the normalized ρ0 − C̃ plane obtained from linear stability analysis on a 1D model [Eq. (7)]. Colored regions
depict ReðωÞ > 0. (a) For diffusivity D̃ ¼ 0, pink indicates ImðωÞ ¼ 0 for all wave numbers. The inset shows a typical oscillatory
pattern with nearly zero diffusivity D̃ ¼ 0.0001 [Video S1(a)], with color representing cell fraction ρ from 0 (gray) to 1 (blue), and the
horizontal axis covering time t∈ ½0; 20�τ and the vertical axis x∈ ½−5; 5�l. Other parameters are C̃ ¼ 5 and ρ0 ¼ 0.5. (b) For nonzero
diffusivity, D̃ ¼ 0.01, three regions are distinguished from linear stability analysis [Eq. (7)]: (I) stable (white), (II) stationary phase
separation (green), and (III) oscillatory and traveling waves (blue). The white region (I) represents all the modes being stable with
ReðωÞ < 0; the green region (II) represents a finite band of modes with ReðωÞ > 0 whereas ImðωÞ ¼ 0; and the blue region (III)
represents a finite band of complex eigenvalues with positive real parts. Colored symbols show the systematic numerical results of the
full 1D model [Eq. (6)], with periodic boundary conditions. Black dots indicate no pattern formation, red up-triangles are used for phase
separation [Video S1(b)], and blue down-triangles are used for traveling waves [Video S1(c)]. Additional complex and irregular patterns
(gray squares) near the interface of regions (II) and (III) are observed, which exhibit two-direction traveling and continuous fission and
merging [Video S1(d)]. Three typical spatiotemporal plots of the cell fraction ρ—including traveling waves (C̃ ¼ 3, ρ0 ¼ 0.7),
stationary phase separation (C̃ ¼ 5, ρ0 ¼ 0.2), and complex transition patterns (C̃ ¼ 4, ρ0 ¼ 0.5)—are shown in the insets, with the
horizontal axis covering time t∈ ½0; 100�τ, and the vertical axis x∈ ½−5; 5�l.
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potential promotes phase separation and lowers the requ-
ired active contractility. However, the critical wave number
for both cases is same as Eq. (8) [see Ref. [20], Sec. III A,
Eqs. (S23)–(S29)].
To understand the role of material rheology on the nature

of the instability, we now turn to a comparison of the purely
elastic, purely viscous, and viscoelastic mixture systems.
The purely viscous mixture with active contractility is
always unstable via a pitchfork bifurcation, because the
linear perturbation amplitude satisfies the equation
aðk2nÞδutt þ bðk2nÞδut þ cðk2nÞδu ¼ 0 with aðk2nÞ > 0 and
cðk2nÞ < 0, which has at least one positive real growth rate
(see Ref. [20], Sec. III C). For the purely elastic and the
viscoelastic mixtures, while elasticity helps to stabilize the
system, contractility serves to destabilize it via either a
pitchfork or a Hopf bifurcation [see Ref. [20], Fig. S3(a)].
Finally, we note that in the absence of contractility, the
system only exhibits a pitchfork bifurcation associated
with the classical picture of phase separation in the Cahn-
Hilliard system.
Numerical simulations.—To follow the dynamics of

pattern evolution beyond the onset of the instability, we
numerically solved the nonlinear equations (6a) and (6b)
after introducing a numerical inertia term Γü in a one-
dimensional domain using a pseudospectral method [29]
(spatial and temporal convergence are validated by increas-
ing the number of collocation points and time steps [see
Ref. [20], Sec. IV C, Fig. S5]) using biologically plausible
parameters (see Ref. [20], Tables S1 and S2). A phase
diagram for the different patterns as a function of the initial
active cell fraction ρa0 and the scaled contractility C̃
obtained from systematic numerical simulations shown
in Fig. 2(b) agrees well with our linear instability analysis,
and it goes further in describing complex dynamic behav-
iors away from the onset of instability.
When the diffusivity D̃ ¼ 0 [Fig. 2(a) inset], in the

unstable region (II) we see the continuous formation and
merger of bidirectional short waves of active cellular
condensation [Video S1(a)], with fission and fusion sta-
tistically balancing each other. Increasing diffusivity yields
three regimes, as shown in Fig. 2(b): no pattern (black
dots), stationary phase separation [red up-triangles, Video
S1(b)], and traveling waves [blue down-triangles, Video S1
(c)]. Near the boundary of the transitions, the dynamics of
patterns can be irregular and chaotic, as for example when
wavefronts merge into one and then move collectively
[Fig. 2(b), middle inset, Video S1(d)]. Comparing the
patterns obtained from our numerical simulations with
those of linear stability analysis, we find that the wave-
length λ ¼ l is close to but a little smaller than the linear
prediction λ ¼ 2πl=k ≈ 1.4l [see Ref. [20], Fig. S2(c)].
Furthermore, the numerical characteristic width of the
periodic stripe pattern (wavelength) shows λ ∼

ffiffiffĩ
γ

p
inde-

pendent of diffusivity [see Ref. [20], Fig. S5], consistent
with the linear stability analysis result given by Eq. (8).

Two-dimensional simulations exhibit more complex but
qualitatively similar behaviors to those seen in our one-
dimensional simulations. Using periodic boundary condi-
tions and random initial conditions, we simulated the
dynamics of Eqs. (4) and (5) [in the parameter space for
phase separation, corresponding to region II in Fig. 2(b)].
Our results show how ordered and disordered spots and
stripes (labyrinthine patterns) arise, similar to the exper-
imentally observed precartilage condensation patterns in
micromass cultures shown in Figs. 3(a) and 3(b) [12,30],
and in Video S2. Using the parameters α̃ ¼ −1, β̃ ¼ 1, and
γ̃ ¼ 0.01–0.2, and carrying out a Fourier analysis of our
simulations, yields the dominant (dimensionless) wave
numbers for spots as kspot ¼ 8.19 in Fig. 3(a) and stripes
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FIG. 3. Experimental and numerical simulations of represen-
tative two-dimensional dynamic patterns. (a),(b) The left column
shows the images of typical in vitro (a) spots [12] and (b) stripes
[30], patterns of precartilage condensations in micromass cultures
of mesenchymal cells from mouse embryos. The right column
exhibits 2D simulations of spots and labyrinth. (c),(d) Exper-
imental (c) normal and (d) abnormal tracheal cartilage rings [8]
and numerical simulations. The parameters used are (a) C̃ ¼ 10,
D̃ ¼ 0.001, ρ0 ¼ 0.3, γ̃ ¼ 0.01 at t̃ ¼ 50, periodic BCs;
(b) C̃ ¼ 10, D̃ ¼ 0.01, ρ0 ¼ 0.3, γ̃ ¼ 0.01 at t̃ ¼ 25, periodic
BCs. Panels (c) and (d) show constant velocity ṽ ¼ 0.001l=τ on
the top boundary with C̃ ¼ 5, D̃ ¼ 0.01, ρ0 ¼ 0.5, γ̃ ¼ 0.1,
L̃y ¼ 10l, with L̃x ¼ 2l in (c) and 5l in (d). Snapshots are
captured at t̃ ¼ 100.
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as kstripe ¼ 7.11 in Fig. 3(b). Using experimental estimates
[12,30] for l ≈ 0.5 mm, we observe reasonable agreement
between experimental observations and numerical results
for the wavelengths of spots and stripes (see Ref. [20],
Sec. V, Fig. S6).
Finally, to investigate the role of boundary conditions to

understand aspects of periodic cartilage condensation along
the tubular trachea in mice [8], reproduced in Figs. 3(c) and
3(d), we prescribe either a constant velocity or a constant
displacement applied at the tube ends and periodic boun-
dary conditions on the lateral boundaries associated with a
cylindrical tube. Here, we neglect the effects of tube
curvature by assuming that it is small relative to the
wavelength of the patterns (and check that this is indeed
the case later). In Fig. 3(c), we see that our simulations
reproduce the experimentally observed periodic condensa-
tion patterns for low loading rates (or prescribed boundary
displacements). Increasing the lateral dimensions or the rate
of loading causes the pattern to become disordered as
shown in Fig. 3(d) (see Ref. [20], Figs. S7 and S8).
Conclusions.—Inspired by the phase separation patterns

of actively contractile cells and passive ECM mixtures in
multicellular tissues, we have provided a minimal model
that generalizes the classical Cahn-Hilliard-Larché theory
for phase separation of elastic solids by including the
effects of cell contractility as well as the viscoelastic
properties (rheology) of the biphasic cell-ECM mixture.
Our theory predicts a critical threshold of contractility, a
critical concentration of cells and ECM for the emergence
of an instability, and its eventual saturation with a finite
wavelength that does not continually coarsen, consistent
with observations. Our theoretical analysis of the instability
and the numerical simulations provides testable predictions
for the wavelength, while also accounting for the role of
boundary conditions in one and two dimensions. Natural
next steps include linking our theory to experiments that
probe the role of activity, cell and ECM fraction and
geometry of the tissue, and generalizing the theory to
account for tissue growth and activity profiles that vary in
space-time and are coupled to gene expression levels.
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