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The observation of traveling breathers (TBs) with large-amplitude oscillatory tails realizes an almost
50-year-old theoretical prediction [E. A. Kuznetsov and A. V. Mikhailov, Stability of stationary waves in
nonlinear weakly dispersive media, Zh. Eksp. Teor. Fiz. 67, 1717 (1974) [Sov. Phys. JETP 40, 855
(1975)] ] and generalizes the notion of a breather. Two strongly nonlinear TB families are created in a core-
annular flow by interacting a soliton and a nonlinear periodic (cnoidal) carrier. Bright and dark TBs are
observed to move faster or slower, respectively, than the carrier while imparting a phase shift. Agreement
with model equations is achieved. Scattering of the TBs is observed to be physically elastic. The observed
TBs generalize to many continuum and discrete systems.
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Fifty years ago, special, localized two-soliton bound
state solutions of the sine-Gordon equation were called
“breathers” because they incorporate two timescales: one
associated with propagation and the other associated with
internal oscillation [1]. The term breather has since been
generalized to solutions of other completely integrable
systems such as the modified Korteweg–de Vries (KdV)
and the focusing nonlinear Schrödinger equations [2].
However, the strict notion of localized breather solutions
appears to be limited to integrable equations. Numerical
simulations [3–5] and mathematical analysis [6,7] demon-
strate that breathers in some nonintegrable equations
necessarily display small oscillatory tails. Consequently,
they have been referred to as quasibreathers [2] or nonlocal
solitary waves [8], although, in some instances, these
oscillatory tails may be vanishingly small [9].
Small amplitude breathers can be approximated

by bright soliton solutions of the focusing nonlinear
Schrödinger equation. Consequently, breathers have been
observed in many situations such as water waves [10,11],
internal waves [12], nonlinear optical [13–15] and matter
[16,17] waves, rogue waves in these systems [18–22],
magnetic materials [23], and discrete systems [24,25].
Breathers with nonvanishing oscillatory tails have been

studied extensively in lattice systems where they are
commonly referred to as traveling intrinsic localized modes
or “traveling breathers” [24,26,27] with experimental
observations of their existence in [28,29]. In the continuum
setting, special solutions, originally called solitary dislo-
cations, were derived for the KdVequation as the nonlinear
superposition of a soliton and a cnoidal traveling periodic
wave in the seminal work of Kuznetsov and Mikhailov
[30]. This was achieved using inverse scattering theory by
introducing a discrete eigenvalue, representing the soliton,
in either the finite or semi-infinite gap of the cnoidal wave

spectrum for the Schrödinger operator associated with
KdV. This solution is a traveling breather with large
amplitude oscillatory tails that can be of either elevation
(bright) or depression (dark) type depending on the
eigenvalue location in the semi-infinite gap or finite gap,
respectively. The cnoidal wave can also be considered a
soliton lattice and so this traveling breather can be viewed
as a soliton-soliton lattice interaction, generalizing the
localized two-soliton bound state breathers in, e.g., sine-
Gordon and modified KdV [2]. The scattering theory for
KdV traveling breathers indicates that they interact with
each other elastically, experiencing only a spatial shift [30].
Despite much ensuing analysis [31–40] and corresponding
physical interest, the observation and scattering of strongly
nonlinear traveling breathers in continuum mechanics is
lacking.
In this Letter, we create and scatter strongly nonlinear

elevation wave or bright (BB) and depression wave or dark
(DB) traveling breathers at the interface between two
viscous fluids by the overtaking interaction of a carrier
wave with a soliton or vice versa. The traveling breather
oscillatory tails—the carrier background—are large ampli-
tude. The results experimentally prove that this class of
breathers can be interpreted as a nonlinear superposition
between a soliton and a cnoidal-like wave, realizing the
spectral interpretation of a traveling breather from inverse
scattering theory developed almost 50 years ago [30,40].
Additionally, we measure traveling breather properties

during free propagation and scattering, finding that they
retain their solitonic character, i.e., interactions are physi-
cally elastic. Unimodal and bimodal geometries of internal
oscillation are observed. Qualitative or quantitative features
of individual traveling breathers and their scattering agree
with predictions from KdV traveling breather theory or
numerical simulations of a viscous two-fluid nonlinear
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model, respectively. Increasing traveling breather speeds
imply decreasing (BB) or increasing (DB) carrier phase
shifts. Slower (faster) traveling breathers exhibit a negative
(positive) spatial shift postinteraction. The observation of
traveling breathers in this model continuum system and
their characterization are relevant to the physics of non-
linear dispersive media more broadly.
The experiments are conducted in a tall acrylic column

of 5 cm × 5 cm × 180 cm, described in [41]. The column
consists of a pressure-driven viscous core fluid with a free
interface to a miscible, heavier viscous reservoir fluid with
a small core-to-reservoir fluid viscosity ratio. We precisely
control the injection of the buoyant, interior fluid in the
low Reynolds number regime, which is convectively un-
stable [42,43], so that straight conduits are established with
constant injection. Time-varying injection results in a
conduit that exhibits an azimuthally symmetric interface
with cross-sectional area Aðz; tÞ, where z > 0 is the vertical
spatial coordinate in the camera view that is slightly above
the injection site. We identify t ¼ 0 as the time at the
initiation of interfacial imaging. At the injection site, the
cross-sectional area satisfies the Hagen-Poiseuille flow law
Q ∝ A2 so it can be precisely controlled by temporally
varying the injection rate Q [44,45].
Viscous core-annular interfacial waves are modeled by

the strongly nonlinear conduit equation expressing mass
conservation [45,46]

At þ ðA2Þz − ðA2ðA−1AtÞzÞz ¼ 0; ð1Þ

given in nondimensional form where z ¼ z̃=L, t ¼ t̃=T,
A ¼ Ã=A0 for dimensional quantities z̃; t̃; Ã, and L, T, A0

are the fitted vertical length, time, and cross-sectional area,
respectively, obtained from separate measurements of
linear dispersive waves on the background injection rate
Q0 ∝ A2

0 [47]. The conduit equation (1) and variants of it
are models of magma flow [49] and channelized water
flow in glaciers [50]. The conduit equation is apparently
not integrable and can be reduced to the KdV equation
in the long-wavelength and small-amplitude regime
[47,51]. Cnoidal-like waves in the form Aðz; tÞ ¼ gðθÞ,

θ ¼ kz − ωt, gðθ þ 2πÞ ¼ gðθÞ and solitons are generated
by evaluating numerically computed traveling wave solu-
tions of the conduit equation [52] at the injection site,
which determines the injection rate time series QðtÞ ∝
gð−ωtÞ2. The characterization and reliable generation of
soliton and cnoidal-like waves have, individually, been
reported in [41,45,53].
Figure 1 displays the spatiotemporal evolution of a

soliton overtaking a cnoidal-like wave. At t ¼ 0, we have
prepared the conduit as a nonlinear cnoidal-like wave (the
“carrier”) that abruptly terminates at the injection site to a
constant flow rate for t > 0. The carrier propagates upward
for positive z and experiences a modulation region as it
transitions from periodic to a constant background
[Fig. 1(a) for t > 20 s, Fig. 1(b)] [47]. This modulated
region consists of a dispersive shock wave [54], a constant
region whose value Amin coincides with the minimum of the
adjacent carrier, and a carrier modulation [54,55]. The
averaged carrier’s amplitude (acn), mean (Ācn), and dimen-
sional angular frequency (ω̃ ¼ ω=T) are reported in
Fig. 1(c). The measured angular wave number (k̃ ¼ k=L)
is k̃ ¼ 2.35� 0.01 cm−1. After terminating the carrier, a
large-amplitude soliton is injected, which is transmitted
through the dispersive shock wave [56] and the constant
region Amin. Because the soliton speed on the constant
region Amin exceeds the carrier’s phase speed (ṽph ¼ ω̃=k̃),
the soliton overtakes the carrier and forms a new coherent
structure. The amplitude of the coherent structure extracted
from experiment [aBBðzÞ ¼ maxt Aðz; tÞ − Amin] oscillates
with propagation. In Fig. 1(c), we plot aBBðzÞ, its envelope,
and the carrier’s properties extracted from each spatial slice
of Fig. 1(b) to characterize propagation up the conduit. The
amplitude, mean, and frequency of the carrier and the
coherent structure’s amplitude envelope exhibit small
fluctuations with height z. We conclude that the coherent
structure is a BB consisting of the nonlinear superposition
of a soliton and a cnoidal-like wave.
Next, we extract the BB’s maximum value for z̃≳ 40 cm

in Fig. 1(b) that follows a zigzag path with constant speed
regularly interspersed between regions of rapid acceleration
and deceleration. The BB speed across the entire zigzag

FIG. 1. Bright traveling breather (BB) in a viscous fluid conduit formed from a soliton overtaking a cnoidal-like periodic traveling
wave. (a) 90° clockwise rotated time lapse. (b) Space-time contour of the cross-sectional area. (c) Background cnoidal-like wave and BB
measurements at different heights. (d) Spatial and temporal profiles (black solid) and the cnoidal-like wave solution of the conduit
equation (1) corresponding to measured parameters (dashed).
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path is ṽBB ¼ 0.63� 0.01 cm=s [47], which exceeds the
measured carrier phase speed ṽph ¼ 0.319� 0.005 cm=s.
This is consistent with KdV BB solutions [30,39]. A more
thorough analysis of the BB trajectory [47] shows that it
can also be viewed as a soliton undergoing a sequence of
phase shifts while interacting with a soliton lattice that
composes the cnoidal-like wave [30,57].
In Fig. 1(d), we extract experimental time and spatial

slices of Aðz; tÞ. The measured BB’s phase shift in space
and time Δθ∈ ð−π; π� is defined as the difference between
the left and right carrier phases. We find that ΔθBBz ¼
0.72π in space and ΔθBBt ¼ 0.75π in time are comparable,
as expected. This BB with a positive phase shift is
consistent with large-amplitude BB solutions of the KdV
equation [39].
To generate a DB, the cnoidal-like carrier is set to

overtake the soliton. So that the carrier fully absorbs the
soliton, it is essential to increase the mean flow rate of the
carrier relative to the soliton. This approach is reported in
Figs. 2(a) and 2(b) where, now, soliton-cnoidal-like wave
interaction results in a depression defect, a DB. For each
fixed z, we define the DB amplitude aDBðzÞ as the difference
between themaximumof the carrier and theminimumof the
DB upper envelope. The measured averaged carrier para-
meters are given in Fig. 2(c) and k̃ ¼ 1.95� 0.03 cm−1. In
contrast to the BB case, the carrier frequency shown in
Fig. 2(c) increases up the conduit. The carrier with a larger
mean than the soliton leads to more carrier fluctuations than
in the BB case. Near the top of the conduit, we observe a 5%
increase in the carrier mean and a corresponding change in
other DB properties. Generally, the injected interior fluid is
suspended at the top after rising through the exterior fluid.
We attribute DB modulations for z̃ > 110 cm to the slow
diffusion of interior fluid from the top, which lowers the
exterior fluid’s density ρe. The observed 5% mean increase
can be explained by a correspondingly small 2.5% decrease
in the exterior to interior density difference via the Hagen-
Poiseuille law in which Ā ∝ ðρe − ρiÞ−1=2 [46]. Note that a
similar mean increase near the top is observed for the BB in
Fig. 1(c). Despite this, propagation of the DB is robust over

a large portion of the conduit z̃∈ ½80; 110� cm where carrier
and DB fluctuations are modest.
The measured DB speed is ṽDB ¼ 0.27� 0.01 cm=s

over z̃∈ ½80; 110� cm while the carrier phase speed is larger
ṽph ¼ 0.45� 0.01 cm=s, a characteristic feature of KdV
DBs [30,39]. Figure 2(d) shows spatial, temporal slices and
the determination of the carrier phase shift. The phase shifts
are ΔθDBz ¼ 0.24π in space and ΔθDBt ¼ 0.25π in time.
While qualitative features of observed BBs and DBs agree

with KdV theory, KdV is a quantitative model only for small
amplitude, a ≪ 1, long waves, k ≪ 1, subject to the dom-
inant balance a ∼ k2, where a and k are the nondimensional
amplitude andwave number of the carrier, respectively. Since
a≳ 1 and k ≈ 0.4 in our experiments, the dominant balance
and smallness conditions are not satisfied. Consequently, we
perform numerical simulations of the strongly nonlinear
conduit equation (1) with periodic boundary conditions
and an initial condition extracted from the time sliced
experimental sections in Figs. 1(d) and 2(d). Figure 3 depicts
a comparison of the simulations, experiment, and a KdV
traveling breather with fitted carrier and phase shift in the
comoving reference frame [47]. In Fig. 3(a), an oscillation
period of the BB [T̃BB ¼ 2π=ðṽBBk̃ − ω̃Þ ≈ 9 s] is shown in
the top four panels with the much smaller than observation
KdV BB solution. Viewed as a soliton-soliton lattice inter-
action, the BB exhibits the unimodal interaction geometry
according to the Lax categories of two-soliton interactions

FIG. 2. Absorption of a solitary wave by a larger-mean, larger-amplitude cnoidal-like periodic traveling wave resulting in a dark
traveling breather. (a) 90° clockwise rotated time-lapse images. (b) Space-time contour. (c) Background cnoidal-like wave and DB
measurements. (d) Spatial and temporal profiles (black solid) and the cnoidal-like wave solution of (1) corresponding to measured
parameters (dashed).

FIG. 3. Experiment (light gray) compared with simulation of
the conduit equation (1) (black) with initial conditions from
experiment, and the KdV traveling breather solution (blue).
(a) BB from Fig. 1(d). (b) DB from Fig. 2(d). The top four
panels in (a),(b) present the evolution over one period.
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[58–60]. For longer times, the simulation and experiment
agree very well, demonstrating the stability, robustness, and
accuracy of conduit BBs relative to observation. Small carrier
discrepancies are due to unphysical periodic boundary
conditions and the acknowledged diffusion issues. The DB
in Fig. 3(b) has period of oscillation T̃DB¼2π=ðω̃−ṽDBk̃Þ≈
17s, depicted in the top four panels. The dimensional
timescale T from Eq. (1) used here is 5% smaller than the
nominal, measured T extracted from separate linear wave
measurements [47]. We attribute this small discrepancy to
interior fluid diffusion and limitations of the conduit equation
as a model [41]. The KdV DB solution differs from
observation, which exhibits a bimodal interaction according
to the Lax categories [60]. The DB simulation closely tracks
experiment subject to some carrier discrepancies.

The reliable creation of single BBs and DBs in viscous
fluid conduits enables the investigation of traveling
breather scattering. We create multiple traveling breathers
on a fixed carrier background by nonlinear superposing the
periodic wave train with two solitons of differing ampli-
tude. Figure 4(a) depicts the scattering of two BBs. The BB
created from the larger-amplitude soliton travels at a faster
speed and overtakes the smaller amplitude BB. Both BBs
are observed to propagate coherently before and after
interaction, maintaining essentially the same shape.
Figure 4(b) tracks BB peak trajectories. We separately fit
the trajectories before and after interaction with linear
functions to derive BB speeds ṽj and spatial shifts Δz̃j
(j ¼ 1, 2) occurring as a result of the interaction (see
Table I). For each BB, the speeds pre- and postinteraction
are the same, within very small error tolerances, indicating
that BB-BB scattering is physically elastic. The faster
(slower) BB experiences a positive (negative) spatial shift.
Figure 4(c) presents DB scattering. The larger amplitude

DB originating from the larger amplitude soliton moves
faster than the smaller amplitude, slower DB. Trajectories
in Fig. 4(d) trace the positions of the DB upper envelope
minima. Again, DB spatial shifts are observed and DB
speeds pre- and postinteraction are conserved (Table I).
The faster (slower) DB undergoes a positive (negative)
spatial shift.
Since all BBs (DBs) are faster (slower) than the carrier, a

BB must overtake a DB for them to interact as shown in
Fig. 4(e). The carrier must have finite spatial extent in order
to concurrently overtake and be overtaken by a soliton to
create a BB and DB. The speed measurements of BB, DB
trajectories (Table I) depicted in Fig. 4(f) again indicate that
the scattering is physically elastic. The DB spatial shift is
negative but the positive BB spatial shift is an order of
magnitude smaller, hence the BB is scarcely affected by the
DB. In all cases of observed traveling breather scattering,
we find that they are physically elastic and faster (slower)
traveling breathers experience a positive (negative) spatial
shift due to the interaction. This observation is consistent
with KdV traveling breather scattering characterized
in [30,38].
In Fig. 4, we launch traveling breather pairs on the same

carrier background. By considering each traveling breather
independently, we can infer their nonlinear dispersion
relation. In Fig. 4(a), individual BB phase shifts after
interaction are ΔθBB1 ¼ −1.08π and ΔθBB2 ¼ −0.85π.

FIG. 4. Observation of traveling breather scattering on a fixed
carrier background. (a),(c),(e) Space-time contour revealing
conduit dynamics. (b),(d),(f) Traveling breather trajectories (blue
and red solid) in the z − t plane with linear fits (dashed) and
spatial shifts Δz̃j. Subfigures provide representative spatial pro-
files at specific times. (a),(b) BB-BB scattering. (c),(d) DB-DB
scattering. (e),(f) BB-DB scattering.

TABLE I. Speed and spatial shift measurements of traveling breather scattering.

Traveling breather 1 Traveling breather 2

ṽ1 before (cm=s) ṽ1 after (cm=s) Δz̃1 (cm) ṽ2 before (cm=s) ṽ2 after (cm=s) Δz̃2 (cm)

BB-BB 0.65� 0.01 0.64� 0.01 1.54 0.55� 0.01 0.53� 0.01 −2.69
DB-DB 0.25� 0.01 0.24� 0.01 1.75 0.20� 0.01 0.19� 0.01 −1.97
BB-DB 0.61� 0.01 0.62� 0.01 0.15 0.22� 0.01 0.21� 0.01 −1.22
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Note that it is standard for a phase shift below −π to be
shifted to ð0; πÞ by adding a 2π period. However, by
maintaining the phase shift sign, we can deduce that an
increasing BB speed corresponds to an increasing BB
amplitude and decreasing BB phase shift. This is consistent
with the KdV BB dispersion relation [39,47]. In Fig. 4(c),
we measure the DB phase shifts postinteraction to be
ΔθDB1 ¼ 0.61π and ΔθDB2 ¼ 0.52π. An increasing DB
speed corresponds to an increasing DB amplitude and
phase shift. For KdVDBs, there are two branches of the DB
nonlinear dispersion relation, slow and fast associated with
positive and negative phase shifts, respectively [39,47].
Our experimental observations are qualitatively consistent
with the nonlinear dispersion relation’s slow branch of
KdV DBs.
This work experimentally verifies that traveling breath-

ers in a continuum system can be generated from the
interaction of solitons and periodic cnoidal-like traveling
waves. While continuum traveling breather theory has been
developed for integrable systems, our observations and
numerical simulations of the two-fluid system suggest that
traveling breathers exist in nonintegrable systems as well.
Traveling breathers appear to be natural phenomena that
occur in continuum environments accompanied by a
possibly large-amplitude oscillatory background, distin-
guishing them from localized breathers. While spectral data
analysis techniques have been developed to extract this
type of information from complex signals using inverse-
scattering-theory-based nonlinear Fourier analysis [61,62],
we have physically realized this nonlinear superposition
principle with a simple method. The scattering of traveling
breathers is observed to be physically elastic (energy
conserving) while exhibiting a spatial shift. This work lays
the foundation for exploring traveling breathers in other
continuum systems such as optics, fluids, condensed
matter, and anywhere nonlinear waves occur.
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