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We propose a solution to the puzzle of dimensional reduction in the random field Ising model, asking the
following: To what random problem in D ¼ dþ 2 dimensions does a pure system in d dimensions
correspond? For a continuum binary fluid and an Ising lattice gas, we prove that the mean density and other
observables equal those of a similar model in D dimensions, but with infinite range interactions and
correlated disorder in the extra two dimensions. There is no conflict with rigorous results that the finite
range model orders in D ¼ 3. Our arguments avoid the use of replicas and perturbative field theory, being
based on convergent cluster expansions, which, for the lattice gas, may be extended to the critical point by
the Lee-Yang theorem. Although our results may be derived using supersymmetry, they follow more
directly from the matrix-tree theorem.
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Introduction.—The subject of dimensional shift, in the
context considered in this Letter, has a long and rather
complex history. That one physical theory in D space
dimensions should be related to another in d ¼ D − 2
dimensions was first suggested in the context of the field-
theoretic formulation of the critical behavior of the Ising
model in a quenched random magnetic field (RFIM) [1,2],
where it was noticed that the most infrared singular
Feynman diagrams in 6 − ϵ dimensions are equal to those
of the nonrandom Wilson-Fisher fixed point in 4 − ϵ
dimensions. This suggests that the lower critical dimension
of the random field model, at and below which the system
does not order, should be Dl ¼ 3. This dimensional
reduction was later explained by Parisi and Sourlas [3]
in terms of an emergent supersymmetry of the classical
field equations. This adds two anticommuting dimensions
which, in integrals, cancel with two of the D commuting
coordinates.
However it appears to contradict a heuristic argument

due to Imry and Ma [4] thatDl ¼ 2, later made rigorous by
Imbrie [5]. Numerical studies [6–9] suggest that dimen-
sional reduction breaks down for D < 5. Over the years
several explanations [10–15] have been put forward to
explain this discrepancy, one of which is that terms which
break the supersymmetry become relevant [16,17]. More
recently Kaviraj, Rychkov, and Trevisani [18] confirmed
this through an exhaustive analysis of a formulation [19] of

the replicated theory in which supersymmetry, and the
terms which break it, are explicit.
Meanwhile Parisi and Sourlas [20] had applied their

ideas to the problem of enumerating branched polymer
(BP) configurations, and concluded that their critical
properties in D < 8 dimensions should the same as those
of the Yang-Lee (YL) edge singularity of the Ising model in
a purely imaginary field [21], or equivalently [22] the
universal repulsive gas singularity at negative activity, in
D − 2 dimensions. This correspondence appears to hold
down to D ¼ 2, in that series expansions for the branched
polymer problem agree with exact results for the YL or
repulsive gas problems. Kaviraj et al. [18,23] found no
evidence for relevant supersymmetry-breaking terms for
this case.
Brydges and Imbrie [24–26] devised a simple continuum

model for branched polymers for which Parisi-Sourlas
supersymmetry is exact and implies an equivalence to a
repulsive gas model in two less dimensions. Their argu-
ments hold to all orders in the activity expansion, which
converges all the way up to the critical point. While this
model is not generic since the interactions have to be fine-
tuned, it is reassuring to have rigorous results which avoid
the use of replicas and perturbative field theory.
It is the purpose of the present work to apply these ideas

to the RFIM, by inverting the question and asking instead:
To what, if any, quenched random system in dþ 2
dimensions does a nonrandom finite range model in d
dimensions correspond?
In order to make rigorous statements we eschew the

replica trick or perturbative field theory, instead using
cluster expansions on fluid models of Ising criticality,
which yield convergent power series in the activity z.
The first is a purely repulsive binary fluid which, in the
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absence of randomness, exhibits phase separation with a
critical endpoint in the Ising universality class. That such a
fluid in a medium with random affinity for one component
over the other should correspond to the RFIM was first
suggested by de Gennes [27], with some later numerical
and experimental support [28]. The advantage of this model
is that it has a simple Mayer cluster expansion. However its
convergence is controlled by the repulsive gas singularity at
negative z, and so cannot straightforwardly be used to draw
conclusions about the physical critical point which is
further from the origin. The second is the well-known
lattice gas representation of the Ising model, in which the
Lee-Yang theorem [29,30] allows the expansion in z to be
continued up to the Yang-Lee circle, where the density of
zeroes is known to determine the critical behavior for z > 0.
In both the field theoretic approach [3] and Brydges and

Imbrie [24–26], integration over the anticommuting coor-
dinates gives a sum over tree diagrams (see Fig. 1) with
certain weights. For Parisi and Sourlas’ discussion of the
RFIM [3] these are the perturbative solutions of the
classical field equations. For their analysis of BP [20]
the Feynman diagrams themselves approximate the poly-
mer configurations [31]. For Brydges and Imbrie [24] the
trees give the partition sum of a microscopic model for BPs.
In this Letter, by contrast, we interpret the trees as a subset
of the diagrams in the cluster expansion of an interacting
fluid in D dimensions. In fact the integration gives
decorated trees, with multiplicative weights for every pair
of vertices in the tree, whether adjacent on the tree or not.
We interpret these as the result of performing the quenched
average over a random potential.
Description of the models and cluster expansion: Binary

fluid.—The species are labeled by a, b ¼ 1, 2 with activities
za and 2-body repulsive potentials Vabðr2Þ with Vab ≥ 0
and V 0

ab ≤ 0. For convenience we take these all to have
the same r dependence up to multiplicative factors.
Phase separation at zero temperature then occurs if
2V12 > V11 þ V22. The grand partition function is

X∞
Na¼0

Y
a

zNa
a

Na!

YNa

ia¼1

Z
e
−1
2

P
bc;jbkc

Vbc½ðrjb−rkc Þ2�ddria ; ð1Þ

where 1 ≤ ia ≤ Na labels the particles of species a, and rai
are their positions, and so on. In order to study the critical
point it is useful, but not necessary, to consider the
symmetric case V11 ¼ V22, z1 ¼ z2, which explicitly
exhibits the Ising Z2 symmetry [32]. Vab then decomposes
into even and odd subspaces, with eigenvalues Vþ > 0 and
V− < 0. In the absence of random fields, in mean field
theory there are two critical points: (i) one with z < 0,
where ϕþ is critical. This is the repulsive gas singularity
[22]. Eliminating the noncritical ϕ− modes leads to a cubic
field theory with imaginary coupling for the ϕþ fluctua-
tions, showing it to be in the same universality class as the

Yang-Lee edge singularity [21]; (ii) with z > 0, where ϕ− is
critical. Eliminating the massive ϕþ field then gives the
usual Landau-Ginzburg-Wilson ϕ4

− free energy. The ran-
dom field h− ¼ h1 − h2 then couples to the order parameter
ϕ−, while hþ couples to the massive mode.
The perturbative analysis of this model using replicas

[1–3] then leads to the dimensional reduction hypothesis
and the aforementioned puzzle of the lower critical
dimension. However, we shall not follow this path, instead
using cluster expansion methods directly on (1). These
proceed by writing Vabðr2Þ ¼ 1þ fabðr2Þ and expanding
(1) in powers of fab. Each term corresponds to a spanning
subgraph of the complete graph with N1 þ N2 vertices,
labeled by r∈Rd and colored a ¼ 1 or 2, each edge of the
subgraph being allocated a factor fab. The mean density
hnað0Þi is given by the sum over connected spanning
subgraphs, or clusters C, with an a vertex rooted at r ¼ 0.
Each cluster integral has the form (suppressing temporarily
the species labels) Cd ¼

R 0 Q
jk∈ eðCÞ fðr2jkÞ

Q
i d

dri where
eðCÞ is the edge set of C, and the prime on the integration
indicates that r1 is to be set to 0.
Lattice gas.—The partition function is

X
nðrÞ¼0;1

Y
r

zðrÞnðrÞe−1
2

P
rr0 nðrÞV½ðr−r0Þ2�nðr0Þ; ð2Þ

where r; r0 ∈Zd and V ≤ 0, which maps exactly onto a
ferromagnetic Ising model with spins sðrÞ ¼ 2nðrÞ−
1 ¼ �1. On a finite graph Eq. (2) is a multinomial of
degree one in each of the zðrÞ, and when these are all equal
is a polynomial satisfying the Lee-Yang theorem [29,30] in
which its zeroes all lie on a circle. Equation (2) may be
transformed into a (lattice) field theory [33]

Z
½dϕ�e1

2

P
rr0 ϕðrÞV−1½ðr−r0Þ2�ϕðrÞþ

P
r
log½1þzðrÞeϕðrÞ�: ð3Þ

Expanding the logarithm then the exponential and using
Wick’s theorem gives

(b)(a)

FIG. 1. (a) Rooted tree. (b) Decorated rooted tree. In D
dimensions, the solid lines represent the Mayer functions and
the dashed lines the disorder average.
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in which each vertex is now labeled by ri ∈Zd and
pi ∈Nþ. Equation (4) has the property that the sums over
the ðri; piÞ are unrestricted and therefore, as for the binary

repulsive gas, a simple Mayer expansion in fpjpk
ðr2jkÞ ¼

e−pjpkVðr2jkÞ − 1 holds for the local density as a sum of
connected rooted diagrams. Note that to any fixed order in
z, the sums over N and pi may be truncated.
Statement of the main result.—We denote the augmented

coordinates by ρμ ∈R2. A prime denotes the derivative with
respect to ρ2.
Theorem (dimensional augmentation).—The mean den-

sities of a nonrandom binary fluid, or of a lattice gas,
in Rd (respectively, Zd) with 2-body potentials Vðr; r0; 0Þ
are equal, to all orders in the activity z, to those for
similar models in Rd ⊗ R2, with potentials
−ð1=πl2ÞV 0ðr; r0; ρ2=l2Þ, when averaged over a random
field drawn from a Gaussian distribution with covariance
−Vðr; r0; ρ2=l2Þ, in the limit as l → ∞.
In fact Rd may be replaced by an arbitrary measurable

continuous or discrete set G, with arbitrary fixed potentials
inserted: only the rotational and translational symmetries in
the extra two dimensions are important. This allows the
extension to arbitrary correlation functions and other
geometries.
Outline of the proof.—We first consider the binary fluid,

using the following identity:

Cd ¼
X
T⊆C

Z 0 Y
jk∉eðTÞ

fðr2jkÞ
Y

lm∈eðTÞ

�
−
1

π
f0ðr2lmÞ

�Y
i

dDri; ð5Þ

where the sum is over all connected spanning rooted
tree subgraphs T of C, and

R 0 indicates that r1 is
not integrated over, but set to 0. This follows by

writing fðr2jkÞ ¼
R
f̃ðαjkÞe−αjkr

2
jkdαjk so that, for fixed

fαjkg, the integrals over the frig have the formR 0 e−
P

lm
rlAlmrmddri ∝ ðdetA0Þ−d=2 ¼ ðdetA0ÞðdetA0Þ−D=2,

where Alm¼Aml¼αlm for l < m and Amm ¼ −
P

l<m αlm,
and A0 is formed by deleting the first row and column
of A. This is of precisely the form to apply the matrix-
tree theorem [34], which asserts that detA0 is given
by the sum over spanning trees weighted by the product
of the αlm on each edge of the tree. These factors
are then equivalent to replacing f → f0 on these edges,
giving (5).
The next step is to sum over all clusters C containing a

fixed tree T. Since each edge ∉ eðTÞ is either ∈C or ∉ C,

this is equivalent to replacing fðr2jkÞ → 1þ fðr2jkÞ ¼
e−Vðr

2
jkÞ on each such edge. Noting that f0 ¼ −V 0e−V ,

and restoring the species labels, we therefore have

hnaid¼
X
T

Y
bc

zNb
b

Z 0 Y
jk∈eðTÞ

1

π
V 0
bcðr2jkÞ

Y
∀ jk

e−Vbcðr2jkÞ
Y
i

dDri;

ð6Þ

which is a multispecies version of the main result of
Brydges and Imbrie [24]. It may also be derived using
supersymmetry, adding two further anticommuting coor-
dinates and showing that (a) their Berezin integrals in
cluster diagrams cancel those over the ρμ; (b) the nonzero
diagrams are (decorated) trees. The above authors interpret
(6) as the partition function for branched polymers, with an
attractive weight with short-range repulsion −V 0e−V
between neighbors on the tree, and a repulsive weight
e−V between all other pairs. The extra minus signs are
absorbed into the activities za, so that BPs in D dimensions
with za > 0 are mapped into the repulsive gas at negative
activity. The multispecies version adds nothing new, since it
is the combination ϕþ which becomes critical there.
Alternatively we may consider (6) as arising from the

expression

X
C

Y
a

zNa
a

Z 0 Y
jk∈ebcðCÞ

f̃bc½r2jk þ ρ2jk�
Y
i

ehaðri;ρiÞddrid2ρi

ð7Þ

for the density of a fluid in a random medium in D
dimensions, averaged over a Gaussian distribution for
ha with covariance as stated, and Mayer functions
f̃bc ¼ ð1=πl2ÞV 0

bcðr2 þ ρ2=l2Þ, corresponding again to a
repulsive gas exhibiting phase separation. Note that we do
not need replicas because we are averaging the density
directly. The limit l → ∞ restricts the sum over clusters C
to the subset of trees, since, on integration over the ρi, the
latter are independent of l, while each loop acquires a factor
l−2 [35,36]. The relative error in neglecting the loop
diagrams can be shown to be ∼cNl−2 where cN grows
no faster than an exponential. This then establishes the
theorem, as long as the pure cluster expansion converges.
This is known to be true for sufficiently small za [37,38]
and should hold all the way up to the repulsive singularity,
which is the closest to the origin. It also implies that any
numerical extraction of the critical behavior at z > 0 from
the power series using, for example, Padé approximants,
will lead to identical results for the two systems. Note that
while the covariance h−h− ¼ −V− of the random field
coupling to the order parameter n− is positive, that of hþ is
negative. This may instead be regarded as a purely
imaginary field of positive covariance coupling to nþ,
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which makes sense because the order parameter at the
repulsive gas singularity is the imaginary part of the
fluctuation in nþ.
For the lattice gas, the argument is similar, with

f̃pjpk
¼ e−pjpkṼ − 1 ∼ l−2pjpkV 0ðr2 þ ρ2=l2Þ. An impor-

tant check is that, because of the l → ∞ limit, Ṽ → 0

and so is independent of the pi. The cluster expansion
converges for sufficiently small jzj. However since it must
reproduce the exact expansion in z to any finite order, it
follows from the Lee-Yang theorem [30] applied to the pure
d-dimensional model that it converges everywhere within
the Yang-Lee circle. Thus the quenched average mean
magnetization of the (long-range) random field D-
dimensional model must also have this property [39]. In
particular, they must have the same density of zeroes on the
circle, and the same critical behavior at the Yang-Lee edge.
Since this controls the physical critical behavior on the real
z axis as the critical temperature is approached, the pure
d-dimensional Ising model and the dþ 2-dimensional
random field Ising model with infinite-range interactions
and correlated impurities have identical critical behaviors.
Discussion.—We have given a concrete answer to the

question posed at the beginning: a nonrandom fluid in d
dimensions with finite range 2-body potentials is precisely
equivalent to one in a quenched random medium in dþ 2

dimensions, in the limit when the range l of the interactions
and correlated randomness in the two extra dimensions
tends to infinity. It is not precisely equivalent to a fluid with
only finite range interactions and impurity correlations, to
which the arguments [4,5] that Dl ¼ 2 apply.
However the present study does not immediately shed

light on why dimensional reduction fails for D < 5 in
short-range models. SUSY implies dimensional reduction
even nonperturbatively [40], so presumably interactions
which break it explicitly should become relevant at the
SUSY fixed point, as concluded in Ref. [18]. In the random
model on which we land through dimensional augmenta-
tion, SUSY is explicitly realized in two ways: through tree
dominance of the cluster expansion, which we have argued
may be realized by taking the l → ∞ limit, but also through
an explicit fine-tuning between the random field covariance
∝ −V and the interaction potential ∝ −V 0.
The relation of the first with the earlier field theory

approaches may be seen in the D-dimensional version of
(3) by rescaling ρ → lρ and V → l2, which modifies the
measure to e−l

2H. The limit l → ∞ then formally leads to
the classical equations, the tree Feynman diagrams [35] and
conjectured Parisi-Sourlas supersymmetry, and dimen-
sional reduction. In fact l−2 may be identified as the
dangerously irrelevant variable in that approach, which
is responsible for the breaking of hyperscaling. It is difficult
to see how such a mechanism could fail as D is lowered.
More likely is that the breaking of fine-tuning becomes
relevant. It would be interesting to carry out numerical

simulations on finite-range models in lower dimensions
with fine-tuning of the random field covariance.
Finally, we have pointed out that dimensional shift by

two, which may be seen as a consequence of supersym-
metry [3,20], also follows from Kirchhoff’s theorem [34]
which preceded this by some 132 years [41].
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