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Recently gained insights into equilibrium squeezing and entanglement harbored by magnets point
toward exciting opportunities for quantum science and technology, while concrete protocols for exploiting
these are needed. Here, we theoretically demonstrate that a direct dispersive coupling between a qubit and a
noneigenmode magnon enables detecting the magnonic number states’ quantum superposition that forms
the ground state of the actual eigenmode—squeezed magnon—via qubit excitation spectroscopy.
Furthermore, this unique coupling is found to enable control over the equilibrium magnon squeezing
and a deterministic generation of squeezed even Fock states via the qubit state and its excitation. Our work
demonstrates direct dispersive coupling to noneigenmodes, realizable in spin systems, as a general pathway
to exploiting the equilibrium squeezing and related quantum properties thereby motivating a search for
similar realizations in other platforms.
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Introduction.—Quantum superposition is a central con-
cept and ingredient underlying diverse phenomena from
entanglement to the quantum speedup in computing [1,2].
A bosonic mode, such as a photon, can be driven into a so-
called nonclassical superposition of its eigenstates—num-
ber or Fock states—thereby admitting various quantum
advantages [3,4], such as enhancement in its coupling to a
qubit via squeezing [5–9]. At the same time, engineering a
dispersive effective interaction ∼ĉ†ĉσ̂z between the boson
(annihilation operator ĉ) and the qubit σ̂z leads to the
latter’s excitation frequency becoming multivalued and
providing information on the boson’s wave function
[10–12]. This has been exploited to measure the quantum
superposition of the number states that constitutes a given
bosonic state [10,12–16]. Since such bosons are also the
interconnects in quantum computers, this interplay between
their nonclassical states and qubits bears a high relevance
for emerging quantum technologies [2,17].
The bosonic spin excitations of magnets, broadly called

magnons, potentially offer advantages in realizing quantum
properties [15,18–20]. Magnets have been shown to nat-
urally harbor nonclassical squeezed states in equilibrium
[21] arising from an interplay between energy minimization
and the Heisenberg uncertainty principle [18,19,28]. For
example, the ground state and eigenmodes of an anisotropic
ferromagnet are constituted by nonclassical superpositions
of states with different number of spin flips or, equivalently,
magnons [18,34]. The latter are not the eigenmodes but
represent the natural or physical basis for the magnet.
Hence, the question arises if and how one can measure such
nonclassical superpositions of noneigenmode basis states
that constitute the system eigenmodes. An answer to this is
also desirable for harnessing the concomitant equilibrium

entanglement harbored by these spin systems for useful
quantum information tasks.
In this Letter, taking inspiration from the successful

detection of nonequilibrium nonclassical superpositions
via a qubit [10,13–16] and building upon recent advances
in probing magnets via qubits [13,15,16,35–40], we address
the question posed above. We theoretically demonstrate a
protocol for measuring the intrinsic nonclassical superposi-
tion that forms the squeezed-magnonvacuumground state of
an anisotropic ferromagnet. We find that the conventional
qubit spectroscopy employing a coherent qubit-magnon
coupling [10,11,41] fails in this goal. However, we show
that achieving a direct dispersive interaction (Fig. 1) between
the qubit and the noneigenmode magnon is the key to
achieving this goal. Such a coupling may result from, e.g.,
the exchange interaction between themagnet and a spin qubit
[42,43]. Furthermore, our proposed qubit-magnon coupling
enables a deterministic protocol to generate nonequilibrium
squeezed even Fock states [44,45] by driving the qubit at
specific frequencies (Fig. 2).
Direct dispersive coupling between magnon and qubit.—

We consider a ferromagnetic insulator with its equilibrium
spin order along the z axis and a spatially uniform (wave
vector k ¼ 0) magnonic mode, represented by the annihila-
tion operator â. The ferromagnet is coupled to a spin qubit,
representedby theoperator σ̂z, via a spin-spin interaction such
as dipolar or exchange coupling (Fig. 1) [46–50]. The Ŝzσ̂z
contribution of the spin-spin interaction provides a direct
dispersive coupling ∼â†âσ̂z [see Supplemental Material
(SM) [51] ]. For the moment, we disregard any coherent
coupling returning to it later. Because of magnetic anisotropy
in the x-y plane,magnons are not the eigenexcitations [28,47]
and the total Hamiltonian reads (ℏ ¼ 1)
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Ĥsyst ¼ Aâ†âþ Bâ2 þ B�â†2 þ ωq

2
σ̂z þ χâ†âσ̂z; ð1Þ

where A and B parametrize the anisotropic ferromagnet [47]
with B resulting from the x-y plane anisotropy, ωq is the
excitation energy of the uncoupled qubit, and χ (assumed
positive here) is the direct dispersive coupling strength. A
derivation of Eq. (1) is presented in the SM [51].
The ferromagnet only part of the Hamiltonian in Eq. (1)

can be diagonalized to ωαα̂
†α̂ with α̂ ¼ â cosh rþ

â† sinh reiθ [28,47] and

ωα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4jBj2

q
; ð2Þ

2r ¼ arctanh

�
2jBj
A

�
: ð3Þ

We refer to the eigenmode α̂ as bare squeezed magnon,
since it is related to the magnon â via the single-mode
squeeze operator [3,28,47]. The squeezing variables r and θ
are determined by A and B of Eq. (1) (see SM [51] for
further details), noting that squeezing and r vanish for
B ¼ 0. As a result, the ferromagnet ground state is vacuum
of the squeezed magnon α̂, which is formed by a quantum
superposition of the even magnon â number states [18,19].
Since the â magnons are not the eigenmodes, it is not clear
how to detect this nonclassical superposition.
Magnon number dependent qubit excitation energy.—

The nonequilibrium superpositions of eigenmode number
states have been investigated via measurement of multiple
peaks in a qubit excitation spectroscopy [10,12,14]. Here,
each peak comes from a different number state contribution
to the superposition. Despite a similar motivation, this
should be clearly contrasted with our goal and challenge
of resolving the noneigenmode magnon number state

composition of the equilibrium or eigenmode state—the
squeezed-magnon vacuum [18,19,28]. We hypothesize that
the desired resolution can be accomplished in our consid-
ered model (Fig. 1) when the qubit energy depends directly
on the noneigenmode magnon number (∼χâ†âσ̂z), by
spectroscopically probing the qubit excitation energies.
We now evaluate the latter to examine this hypothesis.
We first project the total Hamiltonian Eq. (1) onto the

qubit ground state jgi. The reduced Hamiltonian Ĥg ¼
hgjĤsystjgi is obtained as

Ĥg ¼ ðA − χÞâ†âþ Bâ2 þ B�â†2 −
ωq

2
: ð4Þ

In a direct analogy with the discussion and analysis
following Eq. (1), the reduced Hamiltonian Eq. (4) can
be diagonalized to ωg

αα̂
†
gα̂g with a different squeezed-

magnon α̂g eigenmode characterized by a frequency ωg
α <

ωα and squeezing factor rg > r. ωg
α and rg are obtained

from Eqs. (2) and (3) by substituting A → A − χ [67]. We
will refer to α̂g as the ground state squeezed magnon
harboring a different magnetic vacuum as compared to the
isolated ferromagnet [Fig. 2(a)]. The projection Ĥe ¼
hejĤsystjei onto the qubit excited state jei can be obtained
from Eq. (4) by changing the sign of χ and ωq. Analogous

to the discussion above, the bosonic eigenmode of Ĥe
becomes the excited state squeezed magnon α̂e character-
ized by eigenenergy ωe

α > ωα and squeezing factor re < r

FIG. 1. Schematic depiction of the system. The bosonic uni-
form magnon mode in a ferromagnet (FM, green) is coupled to a
spin qubit (blue) through a spin-spin (e.g., exchange) interaction.
The ferromagnetic eigenmode is squeezed magnon α̂, while the
qubit σ̂z interacts dispersively with the spin flip or magnon â via
χσ̂zâ†â. This direct dispersive coupling originates from the qubit
energy depending on the total FM spin, which is governed by the
number of spin flips or magnons (compare upper and lower
panels).

FIG. 2. Qubit excitation spectroscopy of squeezed-magnon
vacuum. (a) The ferromagnet hosts equilibrium-squeezed mag-
nons and corresponding vacuums. As a result, the zero-point
quantum fluctuations depicted in the spin phase space bear
elliptical profiles [18], indicative of their squeezing. The degree
of squeezing is different in three cases: (i) qubit not coupled to the
FM (red), (ii) qubit in excited state jei (blue), and (iii) qubit in
ground state jgi (green). When one spectroscopically probes the
qubit excitation energy ðjgi → jeiÞ, the squeezed-magnon num-
ber can change from 0 to any number state available in the
superposition, due to the differing magnon squeezings in the
qubit excited and ground states. (b) This effectively allows us to
probe the squeezed-magnon vacuum as a superposition of even
magnon number states, with each peak (only first two depicted
here) in the qubit excitation spectroscopy measuring a term in the
superposition.
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[Fig. 2(a)], with ωe
α and re obtained from Eqs. (2) and (3)

on replacing A → Aþ χ.
Altogether, we have diagonalized our Hamiltonian

Eq. (1) denoting the eigenstates by jnie and jnig, where
the subscript g or e indicates the qubit state and n∈N labels
the different Fock states. The key point is that the magnonic
eigenmodes and their respective squeezing are different in
three cases: (i) isolated ferromagnet, (ii) qubit in its ground
state, and (iii) qubit in its excited state [see Fig. 2(a)].
The typical qubit excitation spectroscopy measures qubit

energy corresponding to the transition jgi → jei, while the
boson number state remains the same [10,11]. Consequently,
when we have a nonequilibrium superposition of multiple
number states, the result is observation of boson number-
dependent qubit energy that manifests itself as multiple
spectroscopypeaks. In sharp contrast, our systemhas a boson
modewhose squeezing depends on thequbit state.Hence, the
excitation of qubit need not preserve the boson number.
Thus, transitions j0ig → jnie will take placewith probability
pn ¼ jcnj2 ≡ jehnj0igj2 resulting in correspondingly high
spectroscopy peaks. As demonstrated in the SM [51], the
ground state j0ig is squeezed with respect to the excited state
squeezed-magnon vacuum j0ie with effective squeezing
factor of reff ¼ rg − re [Eq. (3)]. Thus, we may express
j0ig ¼

P
n cnjnie with [3,4]

c2n ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh reff

p ð−eiθ tanh reffÞn
ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p

2nn!
ð5Þ

and c2nþ1 ¼ 0 for n∈N. To summarize, the qubit spectros-
copy should yield a peak for each of the superposition
contributions [Fig. 2(b)], as intuitively hypothesized above.
However, it resolves the ground state squeezed-magnon
vacuum j0ig in terms of the excited state squeezed-magnon
number states jnie [Eq. (5)].
In Fig. 3(a), we plot the squeezing factors rg, re, and reff

as a function of the dispersive coupling strength χ. Only at a
certain value of χ, reff is equal to the squeezing r of the bare
squeezed magnon. In this case, the spectroscopy would
probe the “true” distribution of the bare squeezed-magnon
α̂ vacuum in terms of the magnon â Fock states.
Nevertheless, employing our analysis above, a knowledge
of χ and ωα allows one to translate an observed super-
position into any desired basis.
We now examine the position of the spectroscopy peaks.

As per energy conservation, the transition j0ig → j2nie
occurs when the drive frequency matches the energy
difference between the two states. As detailed in the SM
[51], this is evaluated as ω2n

ω2n ¼ ωq þ
ωe
α − ωg

α

2
− χ þ 2nωe

α: ð6Þ

For χ≪min ½jAj; jjBjðA=2jBj−2jBj=AÞj�, Eq. (6) becomes
ω2n ≈ ωq þ 2χ sinh2 rþ 2n½ωα þ χ cosh ð2rÞ�. The differ-
ent peaks are now well separated by multiples of the bare

squeezed-magnon frequency ωα, potentially making them
easier to detect [68].
In order to guide and quantify the measurability of

multiple peaks resulting from the superpositions, we define
“contrast” as the ratio c ¼ p2=p0 evaluating it as

2c ¼ tanh2ðreffÞ: ð7Þ

The contrast c, plotted in Fig. 3(b), generally characterizes
the reduction of subsequent peaks expected in the
qubit spectroscopy. For small coupling strengths jχj ≪
min ½jAj; jAðA=2jBj − 2jBj=AÞj�, we obtain c ≈ 2jBj2χ2=
ðA2 − 4jBj2Þ2. For small jBj ≪ min ½jA − χj; jAþ χj� and
thus squeezing, the contrast can be expanded as
c ≈ 2χ2jBj2=ðA2 − χ2Þ2. Thus, the equilibrium superposi-
tion peaks can be observed in the qubit spectroscopy when
both the direct dispersive interaction strength χ and
squeezing r are nonzero, with the resolvability of the
peaks increasing with both these parameters.
Simulation of qubit spectroscopy.—We now corroborate

and complement our analytic considerations above by
simulating a qubit spectroscopy setup using the QuTip

package [69,70]. While different experimental methods
can be employed to probe the qubit excitation energy
[10,14], here we consider a microwave qubit drive
described by Ĥd ¼ Ωd cos ðωdtÞðσ̂þ þ σ̂−Þ, where Ωd
denotes the Rabi frequency quantifying the drive strength,

FIG. 3. (a) Squeezing factors vs χ for the magnonic eigenmodes
in the qubit ground state rg (solid line), the qubit excited re
(dotted line), and effective squeezing reff ¼ rg − re (dashed line)
considering bare magnon squeezing of r ¼ 0.5 (blue) and r ¼ 1
(red). (b) Contrast c ¼ p2=p0 [Eq. (7)] as a function of χ for
several values of the squeezing factor r. Its vanishing in the limit
r → 0 signifies that more than one peak in the spectroscopy is
observed only for nonzero magnon squeezing. We consider
ωα=ωq ¼ 0.5 here.
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while ωd becomes the drive frequency. As detailed in the
SM [51], we consider Eq. (1) and Ĥd to describe our system
and account for qubit dissipation [71] via one collapse
operator Ĉ ¼ ffiffiffiffiffi

γq
p

σ̂− with qubit decay rate γq. Solving the
Lindblad master equation [71–73] numerically, we inves-
tigate the steady state qubit excitation hσ̂þσ̂−i.Ωd is chosen
small enough (see SM [51] for a quantification of this
smallness) for the qubit excitation to remain small and in
the linear regime [51,71]. With this protocol, the qubit
excitation should manifest a peak whenever the drive
frequency ωd is resonant with a qubit excitation transition.
In Fig. 4, we show simulations (solid curves) of the qubit

spectroscopy for two squeezing factors r ¼ 0.2 and
r ¼ 0.45, comparing them with our analytic results plotted
as bars at ωd ¼ ω2n [Eq. (6)] with heights ∝ p2n ¼ jc2nj2
[Eq. (5)]. Thus, our analytics agree well with the simu-
lations. We therefore conclude that the first nontrivial peak
indeed stems from the equilibrium squeezing. Because of a
large separation (∼ωα) between the peaks, experiments
may further employ higher values of the drive Ωd in
measuring the smaller peaks. We demonstrate this point
explicitly by simulating the ω4 peak in SM [51].
Consideration of coherent coupling.—Until now, we

have considered a magnet coupled to a spin qubit that
offers a direct dispersive coupling χ [Eq. (1)], found to be
essential for the key phenomena addressed here. We now
examine the role of coherent or Rabi interaction [74]
parametrized by g, such that the system Hamiltonian
becomes

Ĥsyst;SC ¼ Aâ†âþ Bâ2 þ B�â†2 þ ωq

2
σ̂z

þ gðâ† þ âÞðσ̂þ þ σ̂−Þ: ð8Þ

This interaction is universally present in qubits, such as with
spin [42,43] and superconducting (SC) qubits [40,41,75],
while the direct dispersive coupling is not always available.
When the boson and qubit are strongly detuned, i.e.,
g ≪ jωq − ωαj, the coherent coupling also results in an
effective dispersive interaction ∼χ̃α̂†α̂σ̂z [3,10,11,51,76]
which has been exploited in observing nonequilibrium
superpositions in terms of the eigenmode number states.
It is not clear whether one can employ this effective
dispersive coupling to resolve an equilibrium superposition.
Via numerical simulations of qubit spectroscopy

employing Eq. (8) (see SM [51]), we find that the effective
dispersive interaction ∼χ̃α̂†α̂σ̂z does not resolve the non-
classical magnon composition of the equilibrium squeezed-
magnon vacuum. This can be understood a posteriori since
such an effective coupling may address only the eigenm-
odes α̂, and not any internal noneigenmodes. Thus, a direct
dispersive interaction ∼χâ†âσ̂z offered by, e.g., a spin qubit
is needed for resolving equilibrium superpositions. We also
show that any influence of the coherent coupling g when
employing a spin qubit system can be suppressed via an
adequately large detuning jωq − ωαj [51,76].
Discussion.—In the conventional qubit spectroscopy for

dispersively sensing a nonequilibrium quantum superposi-
tion of eigenmode Fock states, the peaks are separated in
frequency by ∼χ̃, which is typically small [10–12]. In our
demonstrated protocol for detecting the equilibrium super-
position of noneigenmode Fock states, the corresponding
peaks are well separated ∼ωα, which makes it feasible to
detect them [77] even when they are relatively small (see
SM [51]).
The direct dispersive interaction results from the Ŝzσ̂z

term contained in exchange as well as dipolar spin-spin
interaction hosted by multiple magnet–spin qubit plat-
forms, as discussed in SM [51]. The resulting χ offered
by an exchange-coupled spin qubit can be large ∼GHz for
small size of the magnet (see the SM [51]) making our
proposal better suited for nanomagnets. Furthermore,
detection of the nth nontrivial peak in the qubit spectros-
copy is accompanied by the transition j0ig → j2nie which
provides a new deterministic approach to generate non-
equilibrium squeezed Fock states [j2nie ¼ S−1ðreffÞj2nig
[18,28,44,45] ] by driving the qubit.
Conclusion.—We have theoretically demonstrated how a

direct dispersive interaction between a qubit and a non-
eigenmode boson (here, a magnon) enables detection of the
quantum superposition that makes up the actual eigenm-
odes (here, squeezed magnon and its vacuum). The same
coupling is shown to allow for a control of the equilibrium
magnon squeezing and a deterministic generation of
squeezed even Fock states via the qubit state and its

FIG. 4. Numerical simulation of qubit spectroscopy using a
Rabi drive. Steady state qubit excitation hσ̂þσ̂−i is plotted against
the Rabi drive frequency ωd for two different values of bare
magnon squeezing r. The first two qubit excitation frequencies
ω0 and ω2 are observed. The shaded bars depict the analytically
evaluated excitation distributions [Eqs. (5) and (6)], underlining
their good agreement with the simulations. Parameters employed
in the simulation are ωα=ωq ¼ 0.5, χ=ωq ¼ 0.2, γq=ωq ¼ 0.1,
and Ωd=ωq ¼ 0.014. The numerical method is detailed
in the SM [51].
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resonant excitation. Thus, this direct dispersive interaction,
readily available in spin systems, opens new avenues for
exploiting the equilibrium squeezing and entanglement
harbored by magnets. At the same time, our work inspires
a search for the realization of direct dispersive interaction in
other, such as optical [78] and mechanical, platforms that
could enable access to equilibrium superpositions.
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