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Using 7.33 fb~! of ete~ collision data taken with the BESIII detector at the BEPCII collider, we
report the first experimental study of the purely leptonic decay Dt — e*v,. Our data contain a signal of this
decay with a statistical significance of 2.9¢. The branching fraction of Dt — e¢*v, is measured
to be (2.1755 4 0.24) x 107, corresponding to an upper limit of 4.0 x 10~ at the 90% confidence
level. Taking the total width of the D} [(0.070 £ 0.028) keV] predicted with the radiative D}* decay from
the lattice QCD calculation as input, the decay constant of the D}t is determined to be
for = (214f§’ém +44,,4) MeV, corresponding to an upper limit of 354 MeV at the 90% confidence level.

DOI: 10.1103/PhysRevLett.131.141802

Purely leptonic decays of charmed-strange mesons,

D.(;*)Jr - v, (€ =e, p, or 7), offer the simplest and
best-understood probes of the ¢ — s quark transition [1].
The effects of the strong interaction can be parametrized in

terms of the DE*)+ decay constants (f+). Experimental

studies of these decays are crucial to test lattice QCD
(LQCD) calculations of f Dl [2-4] and the unitarity of the

quark-mixing matrix [5,6]. In addition, the branching

fractions (BFs) of D\ — #*u, for different families
of leptons are important to testing lepton flavor univer-
sality in the charm sector. Intense experimental investiga-
tions [7-11] of the (ground-state) pseudoscalar mesons,
e.g., DY, have allowed for precision tests of the standard
model (SM). However, for (excited-state) vector mesons,
e.g., Dit, there have been relatively few theoretical
studies, and no experimental study of their weak decays
has yet been reported.

Reference [3] states that the Dt — e*v, decay may be
the most promising channel to observe the weak decay of a
charmed vector meson. In the SM, the decay width of
Dt — ¢*v, can be written as [4]

G%’ m?r 2
0 = )= GEV i (1 1)
D

2

m,.
x [ 14—2—), 1
( 2@) (1)

where G- is the Fermi coupling constant, |V | is the ¢ — s
Cabibbo-Kobayashi-Maskawa matrix element, m,+ is the
lepton mass, and m . is the D+ mass. The decay constant
Sfp+ has been calculated via the nonrelativistic quark
model [12—14], the relativistic quark model [14-16], the
light-front quark model [17,18], the QCD sum rules
[19-21], and the LQCD [4,22-26] with predicted values
varying from 212 [12] to 447 [14] MeV. The BF of

Published by the American Physical Society under the terms of
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Dit — ety, is predicted to be from (0.67 +0.04) x
107 to (3.4 £ 1.4) x 107 [3,4,27]. The measurement of
the BF of D" — e*v, is important for testing the predicted
BFs by different theories. Using the measured BF of
D!t - ety,, the decay constant f p:+ can be given by
combining with the total decay width of the D" meson
(F}‘)’%i') predicted via the radiative D+ decay by LQCD. It is
crucial to test the predictions based on various methods.
Reversely, combining the measured BF of D}t — e*v,, the
ratio of (fp:+/fp+) predicted by LQCD, the D{ lifetime
and the BF of the leptonic D] decay from the particle data
group [5] leads to a determination of the unknown F‘L‘)’%‘il,
which is important for clarifying the large differences in
various theoretical predictions of the electromagnetic or
strong couplings [3,28-30].

This Letter presents the first experimental search for the
decay DiT — e*v, by using 7.33 fb=! [31] of ete”
collision data collected by the BESIII detector at the
BEPCII collider at the center-of-mass energies E., =
4.128, 4.157, 4.178, 4.189, 4.199, 4.209, 4.219, and
4.226 GeV. At these energies, the D" mesons are produced
mainly through the process ete™ - D;yD!" + c.c. In an
event where a Dy meson is fully reconstructed and comes
directly from the e™ e~ collision [called a single-tag (ST) Dy
meson], the D™ meson decaying to e™v, can be searched
for in the recoiling system. Surviving events are called
double-tag (DT) events. Throughout this Letter, charge-
conjugate modes are always implied.

The charged tracks and photons are selected based on
the design and performance [32] of the BESIII detector.
The endcap time-of-flight (TOF) system was upgraded
with multigap resistive plate chamber technology and now
has a time resolution of 60 ps [33,34]. The selection
regions for various variables are set as 3 standard devia-
tions of resolution around the nominal peak or via
optimization based on figure-of-merit (S/+/S + B).
Monte Carlo (MC) events are generated with a Geant4-
based [35] detector simulation software package [36],
which includes both the geometrical description and the
response of the detector [37]. Inclusive MC samples are
produced at the corresponding center-of-mass energies and
include all open charm processes, initial state radiation
(ISR) production of the y(3770), w(3686) and J/y, and
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TABLE 1. Requirements for M- and the obtained values
of NIXI8 ekl and 47 in the ith tag mode at
E_., = 4.178 GeV, where the uncertainties are statistical only.
The differences among the ratios of eiyi!’® over ef%!7
for various modes are mainly due to the M,.. and other signal

side requirements.

M- NI £id1T8 £i178
Tag mode (GeV/c?) (x10%) (%) (%)
K"K 7~ [1.950, 1.986] 56.3 =0.4 35.67 0.04 24.46 £0.11

Kt*K-n~7° [1.947, 1.982] 18.3+£0.5 10.62+0.03 8.57 £0.07
ata n [1.952, 1.984] 15.8 +0.4 46.97 +0.14 35.19+0.13

K9K- [1.948, 1.991] 14.0+0.2 43.41 +£0.08 31.71 £0.13
KYK=7° [1.946, 1.987] 49+£0.2 159140.09 13.44+0.08
K rtn~ [1.953, 1.983] 8.2+0.4 40.16£0.22 29.45£0.12
K9KOn~ [1.951, 1.986] 2.3+£0.1 20.8240.12 14.85+0.09

KYKTn~n~ [1.953, 1.983] 6.1 +£0.2 18.114+0.06 13.07+0.08
KYK=ntz= [1.958,1.980] 3.1£0.2 16.124+0.10 12.69 4 0.08
Ny 7~ [1.930, 2.000] 8.4+0.3 42.61+0.18 34.95+0.13

N ror~  [1.941, 1.990] 2.4 +0.1 20.76 +0.13 16.87 & 0.09
My ® [1.940,1.996] 3.9:+0.1 2048+0.10 16.14+0.09
0 o [1.938, 1.992] 10.7 £ 0.3 29.21 +0.12 2323 £0.11
Mo~ [1.920, 2.006] 15.3 £ 0.6 16.95 +0.09 16.51 & 0.09
Netpwp~  [1.927,1997] 39403 7524007 7.46+0.06

ny,wtn~x™ [1.946, 1.990] 9.640.7 21.37£0.22 19.99 £0.10

qq(q = u,d, s) continuum processes, along with Bhabha
scattering, u"u~, t77~, and yy events. The open charm
processes are generated using CONEXC [38]. The effects of
ISR [39] and final state radiation (FSR) [40] are consid-
ered. The decay modes with known BFs are generated
using EvtGen [41,42] and the other modes are generated
using LUNDCHARM [43]. Also, a dedicated “‘signal MC”
sample of e"e” — DyD}t + c.c. is generated in which
D7 is allowed to decay via all possible channels and the
D™ decays to eTu,.

The ST D3 mesons are reconstructed from 16 hadronic
decay modes, D; - K"K 7=, K*K 7z a° ntnn,
KOK-, KSK=2° K- ntz~, K$4KSn~, KK nn,
KK ntn™, 0, Nyig o, 11;+ﬂ_,1ﬂ77.'_, 17;/)07:_, Ny
Netwa2P~» and n,, 77~ 7=, where the subscripts of 7 (17')
represent the decay modes used to reconstruct 7 (17').
Throughout the text, p denotes p(770) and p~/° decays
to 7~x%*.

All charged tracks except those from K§ must originate
from the interaction point with a distance of closest
approach less than 1 cm in the transverse plane and less
than 10 cm along the z axis. The polar angle 6 of each track
defined with respect to the symmetry axis of the main drift
chamber (MDC) must satisfy |cos8| < 0.93. The com-
bined information from the specific ionization energy loss
(dE/dx) measured by the MDC, the TOF, and the electro-
magnetic calorimeter (EMC) are used for particle identi-
fication (PID) by forming likelihoods £, (p = K, , e) for

each particle p hypothesis. Kaon (pion) candidates are
required to satisfy Lg(z) > Ly and L) > L.

To select K9 candidates, pairs of oppositely charged
tracks with distances of closest approach to the interaction
point less than 20 cm along the z axis are assigned as 7zt 7~
without PID requirements. These #"z~ combinations are
required to have an invariant mass within 12 MeV/c? of
the world average Kg mass [5] and have a decay length
greater than twice its resolution.

The 7° and 5 mesons are reconstructed from photon pairs.
Photon candidates are selected from the shower clusters in
the EMC. Each electromagnetic shower is required to start
within [0, 700] ns from the event start time. The shower
energy is required to be greater than 25 (50) MeV in the
barrel (endcap) region of the EMC [44]. The opening angle
between the candidate shower and the nearest charged track
extrapolated to the EMC is required to be greater than 10°.
To form z° and 7 candidates, the invariant masses of the
selected photon pairs are required to be within the M,
intervals (115,150) and (500, 570) MeV/c?, respectively.
To improve momentum resolution, a kinematic fit is
imposed on each chosen photon pair to constrain its
invariant mass to the world average z° or 5 mass.

For the tag modes Dy — #,0,+,-x~ and 10, ,-p~, the
#°z* 7~ combinations used to form 7 candidates are
required to be within the intervals (530,570) MeV/c2.
The #' mesons are reconstructed via two decay modes,
natz~ and yp°, whose invariant masses are required to be
within the intervals (946,970) and (940,976) MeV/c?,
respectively. In addition, the energy of the y from ' — yp°
decays must be greater than 100 MeV. The p° and p~
candidates are reconstructed from the z*z~ and 7~ 7°
combinations with invariant masses within the inter-
val (570,970) MeV/c?.

To remove soft pions originating from D* transitions, the
momentum of pions directly from the ST Dj are required to
be greater than 100 MeV/c. For the tag mode D; —
atx~n~ (Dy — K n"n~), the contribution of the peaking
background from the decay Dy — Kgﬂ'_ (Dy — KgK‘) is
rejected by requiring all #7772~ combinations to be outside
the mass window of (468, 528) MeV/c?.

In each event, we only keep the ST Dy candidate with
mass (M p-) closest to the world average value per tag mode
per charge. Non-D; Dt events are further suppressed by
requiring that M- agrees with the world average value
within 3¢ [5] of each tag mode experimental resolution.
The M- requirements are listed in the second column of
Table 1. The recoiling mass of the ST D7 is defined as

2
Mrec = \/(Ecrn - \/|5D;|2c2 + m%xc‘*) /C4 - |ﬁD;|2/C2,
(2)
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TABLE II. The total ST yields (N{;;T) and the averaged signal
efficiencies (¢/ +, ) for data samples at different energy points,

where the uncertainties are statistical only. The differences among
the signal efficiencies for different data samples are mainly due to
the M. requirement.

En (GeV) My (GeV/c?) Ny (x10%) el (%)

4.128 [2.105, 2.123] 148 +£0.3 81.31 £0.35
4.157 [2.103, 2.127] 22.0£0.5 78.58 £0.29
4.178 [2.100, 2.130] 183.1+1.4 77.01 £0.16
4.189 [2.100, 2.136] 325+0.7 77.25 +0.28
4.199 [2.099, 2.140] 30.1 £0.9 76.61 +£0.26
4.209 [2.098, 2.145] 309+ 0.6 7422 +£0.24
4.219 [2.098, 2.154] 26.0 £ 0.5 74.49 £ 0.28
4.226 [2.098, 2.167] 41.1£0.7 74.94 £0.24

where (Pem, Ecn) 1s the four momentum of the ete”
system and pp- is the measured momentum of the ST
Dy candidate. The mp- is fixed at the world average Dy
mass. The M. of the direct Dy from an eTe™ — D;D:™
pair tends to form a peak around the world average D"
mass, while other processes (e.g., eTe™ - yD{ Dy,
ete™ — 7°D¥ DY) produce flat distributions. The ST yield
for each tag mode is obtained from the fit to the corre-
sponding M .. spectrum. The signal is described by the
MC-simulated shape convolved with a Gaussian function
representing the resolution difference between data and MC
simulation. The nonpeaking background is modeled by a
second- or third-order Chebychev polynomial function.
The parametrization of the background shape is validated
using the inclusive MC sample. Events for the further
analysis are selected within the M. signal regions opti-
mized according to S/+/S + B, with signal efficiency larger
than 90% at each center-of-mass energy. Here, S and B
denote the signal and background yields from the inclusive
MC samples. The E,,-dependent M . regions are listed in
the second column of Table II. As an example, Fig. 1 shows
the fit results of the M., spectra for various tag modes in
data at E_, =4.178 GeV. The resulting ST yields
(Ni%!"®), and the corresponding ST efficiencies (ei%!7®
are summarized in the third and fourth columns of Table I,

respectively. The results for N lsz and s’S/T at the other energy

points are obtained similarly. The total ST yields N4, at
various energy points are summarized in the third column
of Table II. The i denotes the 16 ST modes, and the j
denotes different data samples.

On the recoiling side of the ST Dy meson, only one
residual charged track is required to be identified as an e*.
The e* candidate is required to satisfy £, > 0.8 x (L, +
L.+ Lg) and L, > 0.001. The energy loss of the e*
candidate due to bremsstrahlung is partially recovered by
adding the energies of the EMC showers that are within 10°
of the e™ direction and not matched to other particles. The

60 F

Ktx—=x— Ktxk—n— =0 ! atr—n— "I‘y-y"l’+"|'_"l’_
40 | .
2 71 l/ \J,__, i/\i.—’ o
0 [~ 0‘ . it S A i
20 F KgK™ K atn— My p0™ e
15F : o

Events / (0.5 MeV/c2) (x10%)

210 212 214210 212 214210 212 214210 212 2.14
M, (GeV/c?2)

FIG. 1. Fits to the M, distributions of the ST candidates at

E., =4.178 GeV. Points with error bars are data. Blue solid

curves are the fit results. Red dashed curves are the fitted
backgrounds. Pairs of red arrows denote the signal regions.

signal is separated from combinatorial backgrounds using
the square of the missing mass defined as

2 - |2
MrznissE‘Ecm_ZEk’ /C4_‘Zpk‘ /sz (3)
k k

where E; and p; are the energy and momentum of particle
k in the center-of-mass frame, and the sum runs over the ST
Dy and the e of the signal side. The measured energy of
the e™ in the rest system of the D™ is required to be greater
than 1.01 GeV. To suppress backgrounds from hadrons and
muons the e candidate is required to have the ratio of the
energy deposited in the EMC over the momentum (E/ p)
within the range [0.8, 1.2]. To suppress background events
with extra photon(s), the maximum energy of the unused
showers in the DT selection (Egr,,) is required to be less

than 300 MeV. Figure 2 shows the M2
accepted DT candidate events in data.

To obtain the DT yield, an unbinned maximum extended
likelihood fit is performed on the resulting M2, distri-
bution. In the fit, the signal and background shapes are
obtained from the signal and inclusive MC samples,
respectively. The background from the decay D] —
tty, with 75 - e¢*v,0, tends to form a peak around
0.17 GeV?/c* while other backgrounds are flat. All back-
grounds from the inclusive MC samples are combined into
one background shape. The event yields from the signal
and the combined background are free parameters of the

fit. The result of the fit to the M2 _distribution is shown in

miss

distribution for the
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L ® Data
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f 4 D{>t'v, with 1> e*v ¥,
a; [ Other backgrounds
> L
&}
v L
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S
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miss

(GeV¥/cd)
FIG. 2. Fit to the M2, distribution of the D;* — ef,
candidates. Points with error bars are data. The blue solid
curve is the fit result. The red dotted curve is the signal. The
magenta cross-hatched histogram is the decay D] — 7T,
with 77 — e'v,D,. The gray filled histogram denotes the flat
background.

Fig. 2. The obtained signal yield of DT — eTv, is
Npr = 6.23';1 , where the uncertainty is statistical only.
The statistical significance of the signal is 2.9¢, which is
estimated by comparing the likelihoods with and without
the signal component in the fit and taking into account the
number of degrees of freedom.

The efficiencies for reconstructing the DT candidate
events are determined with the signal MC sample. The
DT efficiencies (eiy;!’®) obtained at E,,, = 4.178 GeV are
summarized in the fifth column of Table I. Dividing the DT
efficiencies by the ST efficiencies yields the effective

efficiencies for detecting D}t — e*v,. The obtained

e/, at various energy points are summarized in the fourth
.

column of Table II. The effective signal efficiency for
finding e*v,, weighted by the ST yields for different tag
modes and energy points, is obtained to be &, =
(76.63 £+ 0.09)%. The BF of D™ — e™v, is determined by

NDT

B(Dit - ety,) = ———,
' ‘ g'e*t/er]VéT

4)

to be (2.11}%:3% + 0.24) ¥ 1073, The statistical uncertainty
is from Npr, and the systematic uncertainty is dis-
cussed later.

Because of limited statistics, an upper limit on the BF of
Dit - ety, is also set by following Ref. [45] after
incorporating the systematic uncertainty via a likelihood
scan method. The upper limit of the BF of D™ — ety, is
obtained to be 4.0x 107 at the 90% confidence
level (C.L.).

The total systematic uncertainty of the BF measurement
is determined to be 10.8%. It is obtained by adding in
quadrature the individual contributions described below.

The e™ tracking and PID efficiencies (including the E/p
requirement) are studied with radiative Bhabha scattering
events. The efficiency differences between data and MC
simulation, 0.5% and 1.0%, are assigned as the correspond-
ing systematic uncertainties. The uncertainty in the yield of
ST Dy mesons is assigned to be 0.9% by examining the
relative changes of the fit yields when varying the criteria of
truth-matching for signal shape and the order of Chebychev
function for background shape. The uncertainty due to the
MC statistics is 0.1%. The uncertainty due to the FSR effect
is assigned to be 0.5% by studying the radiative Bhabha
scattering events [11]. The uncertainty due to different
multiplicities of tag environments is assigned as 0.5%.

The efficiency for the requirements of EG,, and only
one charged track in the signal side is studied with the
hadronic DT samples. The systematic uncertainty is taken
to be 0.5% considering the efficiency differences between
data and MC simulation. For the requirement of the e™
energy in the rest system of D™, the systematic uncertainty
is estimated by changing this requirement by £10 MeV.
The largest relative change of the BF, 9.5%, is assigned as
the corresponding systematic uncertainty.

The systematic uncertainty of the signal shape is esti-
mated by using an alternative MC model and is found to be
negligible. The systematic uncertainty in the background
shape is examined via two aspects. First, the background
shape is replaced with the alternative background shapes
obtained by varying the relative fractions of the different
background components and shifting the input cross
sections by 1. Second, the shape of peaking background
is replaced with the one obtained from an ete™ —
Dy Di~ + c.c sample 200 times of the data size, and the
combinatorial background shape is replaced with the one
derived from the M, sideband events. The maximum
relative change of the BF, 4.8%), is taken as the systematic
uncertainty.

With Eq. (1) and the equation (1) of Ref. [10], the total
width of the D" is expected to be F‘D"E‘l =2.04 x 1073x
(fpe+/fp: )}/ B(DiT — ety,) eV, after combining the
world average values of B(Dy — u*v,), the lifetime of
the D}, m,, mp-, m,, and mp- [5]. Combining with
(fp+/fpr) = 1.12 £ 0.01 averaged from LQCD calcula-
tions [4,22-26] and B(D;" — e"v,) obtained in this work
gives FtD"?\il = (122710 £ 12) eV. Tt agrees with (70 & 28) eV
predicted by LQCD [4] within +16.

Combining our BF measurement with the world average
values of Gp, m,, mp:+, and T'S%! given by LQCD [4], we
obtain fp-+|V | = (20832%1 + ‘435yst) MeV. Here the sec-
ond uncertainty is mainly from the systematic uncertainty
in the measured B(D}* — e*v,) (10.8%) and the uncer-
tainty in the LQCD predicted FID"E;E (40.0%). Taking |V .| =
0.97349 4+ 0.00016 from the SM global fit [5] as input, we
determine [+ = (214:?61% + 44,,) MeV, corresponding
to an upper limit of 354 MeV at the 90% C.L.
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HPQCD 274 6 -
LPTHE 272 £16%, ——
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UKQCD 254 £17 —a—
ETM 268.8 + 6.6 -
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FIG. 3. Comparison of fp.+ obtained in this work and LQCD
calculations. From top to bottom, the predicted results are from
HPQCD [4], LPTHE [22,23], UKQCD [24], ETM [25], and
xQCD [26]. For the result of this work, the shorter red error bar
denotes the statistical uncertainty only while the longer black
error bar combines both statistical and systematic uncertainties.

In summary, by analyzing 7.33 fb~! of e*e™ collision
data collected at E_,, from 4.128 to 4.226 GeV with the
BESIII detector, we report the first experimental search for
the purely leptonic decay Dt — e*v,. The BF of Dit —
"y, is determined to be (2.17)5 +0.2) x 107>, Our
result indirectly constrains the upper limit on the total width
F‘DO%T from the MeV [5] to sub-keV level. Using the I'p-+
predicted by LQCD and the |V | obtained by the global fit
in the SM, the decay constant of D" is determined.
Figure 3 shows the comparison of the f): obtained in
this work and LQCD calculations. The obtained f -+ offers
the first experimental test on various theoretical calcula-
tions. This analysis opens an avenue to study the weak
decays of charmed vector mesons in experiments.
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