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Using holographic duality, we present an analytically controlled theory of quantum critical points
without quasiparticles, at finite disorder and finite charge density. These fixed points are obtained by
perturbing a disorder-free quantum critical point with relevant disorder whose operator dimension is
perturbatively close to Harris marginal. We analyze these fixed points both using field theoretic arguments,
and by solving the bulk equations of motion in holography. We calculate the critical exponents of the IR
theory, together with thermoelectric transport coefficients. Our predictions for the critical exponents of the
disordered fixed point are consistent with previous work, both in holographic and nonholograpic models.
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Introduction.—Quantum field theory has proven to be
a powerful tool to study and classify quantum phases of
matter [1]. In real experiments, of course, there is
always disorder; the Harris criterion [2] determines
whether such disorder qualitatively changes the IR fixed
point (whether it is relevant or irrelevant). When
disorder is Harris relevant, it is challenging to under-
stand the intrinsically disordered IR fixed points that
arise. Existing constructions in higher dimensions are
often analyzed close to fixed points with quasiparticles,
such as free theories or large-N vector models [3–12].
The problem is especially difficult in theories at finite
charge density, and/or with a Fermi surface, where
controlled field theories of strongly interacting non-
Fermi liquids are difficult to construct [1].
This Letter presents a controlled calculation, wherein we

perturb a UV quantum critical point by Harris-relevant
disorder, and analytically deduce the properties (critical
exponents and transport coefficients) of the resulting
compressible IR fixed point. Our construction relies on
holographic duality [13,14], which maps certain models of
“matrix large-N” strongly interacting quantum field theo-
ries to classical gravity in one higher dimension. These
models holographically describe maximally chaotic [14,15]
field theories, which do not have any (known) quasipar-
ticles. Through a careful nonperturbative analysis of the
nonlinear gravitational equations, we determine the scaling
exponents and transport coefficients of the emergent IR
fixed point, at finite disorder and finite density.
Main result.—Let us summarize the main physical

conclusions of the calculations. We consider theories
perturbed by disorder which couples to scalar operator O:

S ¼ S0 þ
Z

dtddxhðxÞOðx; tÞ: ð1Þ

with S0 a disorder-free action describing a quantum critical
point with dynamical critical exponent z and hyperscaling
violation θ. hðxÞ is zero-mean Gaussian disorder:

hðxÞhðyÞ ≈Dδðx − yÞ: ð2Þ

The Harris criterion [2] tells us that disorder is relevant when
the operator dimension ½D� > 0. If the operator dimension of
O is Δ, defined by hOðx; 0ÞOð0; 0Þi ∼ jxj−2Δ, then [16]

½D� ¼ −2Δþ d − θ þ 2z: ð3Þ

It is useful to write

Δ ¼ d − θ

2
þ z − ν; ð4Þ

so that ν ¼ 0 corresponds to Harris-marginal disorder, while
ν > 0 implies Harris-relevant disorder. For convenience, we
also requireO not to be described by alternate quantization in
holography, so Δ > ðdþ zÞ=2 [16].
We first discuss a minimal theory: a charge-neutral

conformal field theory (CFT) in d ¼ 1 spatial dimension,
perturbed by disorder as in (1), with ν ¼ 0. After a series of
works [9,17–21], it was shown that disorder is marginally
irrelevant: the scale-dependent disorder strength is cap-
tured by a beta function,

βD ¼ dD
d logE

¼ jCOOT j
CTT

D2; ð5Þ

COOT , CTT are operator product expansion coefficients
within the CFT.
This Letter concludes this search for a disordered

fixed point without quasiparticles as follows. Just as the
Wilson-Fisher fixed point can be perturbatively accessed in
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d ¼ 3 − ϵ spatial dimensions [22], with ϵ perturbatively
small, if we turn on a perturbatively small ν in (4),

βD ¼ jCOOT j
CTT

D2 − 2νD: ð6Þ

This flow equation has a stable fixed point as E → 0 if
ν > 0: the value of disorder at the critical point is finite and
nonzero, and takes the universal value

D� ¼ 2νCTT

jCOOT j
: ð7Þ

Invoking a universal relation [9] between D� and z�, valid
for perturbations away from a conformal field theory, we
obtain dynamical critical exponent

z� ¼ 1þ jCOOT j
CTT

D� ¼ 1þ 2ν: ð8Þ

The argument above can be justified both using our
holographic models, and using conformal perturbation
theory to derive the exact prefactor of (5): see the
Supplemental Material [23] for the latter. However, we
do not know any field theoretic tools to generalize (8) to
perturbations of scaling theorieswhere z ≠ 1. Yet these z ≠ 1
theories include many interesting models of strange metals
[1]. In contrast, we can more naturally generalize this
argument to holographic models of a quantum critical point
ind spatial dimensions, at finite densityρ of a conservedU(1)
charge. We take the exponents z > maxð1þ θ=d; θÞ and
θ ≤ d − 1, so that the holographic model obeys bulk energy
conditions [14]. We then add Harris-relevant disorder
through (1), satisfying (2) and (4) with 1 ≫ ν > 0. The
system flows to a disordered IR fixed point characterized by a
new set of scaling exponents z�, θ�:

z� ≈ zþ 2ν

d
ðz − θÞ; θ� ¼ θ: ð9Þ

While the hyperscaling violation θ remains the same as that
in the disorder-free critical point for any ν, the dynamical
exponent z will increase linearly in ν at the leading order.
We have calculated the ac electrical conductivity σðωÞ at

finite density IR fixed points. We find (schematically) that

σðωÞ ∼ KT−2þd−θ�
z�

1 − iωτ
þ Fðω=TÞω2þd−θ�−2

z� ; ð10Þ

where K ∼ ρ2=D� is a temperature-independent constant,
and F is a scaling function. When z� < 2þ d − θ�, we find
that τT scales anomalously (diverges) as T → 0: see (31). If
ω ≪ T, therefore, there is a sharp Drude peak, and the first
term in (10) dominates. The physical reason for this Drude
peak is that the IR fixed point has perturbatively weak
disorder (D� ∼ ν), so the low frequency conductivity will

be dominated by slow momentum relaxation: this is called
a “coherent” contribution to transport [26]. The lifetime of
momentum τ can be calculated using established methods
[27], and we argue that it can be sensitive to UV
thermodynamic data. Hence, although the static properties
of the IR fixed point are universal, the width of any Drude
peak is not. If z� ≥ 2þ d − θ�, τ ≲ 1=T would naively be
sub-Planckian, so our conclusion is that there is no well-
defined Drude peak: the frequency dependence of the
second term in (10) is more important. When ω ≫ T,
the second term in (10) dominates. This is called the
“incoherent” conductivity, and is associated with current-
relaxing dynamics decoupled from momentum relaxation.
The incoherent conductivity of the IR fixed point theory is
universal and exhibits Planckian ω=T scaling; the function
F is insensitive to UV physics.
Holography.—Having summarized the physics of the

disordered fixed points, let us explain the holographic
models we studied. In general, holography (“AdS=CMT”)
[14] is a powerful framework for building toy models of
quantum matter without quasiparticles by mapping the
physics onto a gravitational theory in one higher dimen-
sion. Fields in the higher-dimensional “bulk” theory
correspond to low-dimension operators in the quantum
field theory (QFT). All QFTs have a stress tensor, which is
dual to the spacetime metric gab in the bulk. A finite density
system requires a conserved U(1) current, dual to a bulk
gauge field Aa. A scalar field (dilaton) Φ in the bulk
represents a scalar (spin-0) operator in QFT. Following
[16,28,29], we consider specifically the Einstein-Maxwell-
Dilaton (EMD) action in dþ 2-dimensional spacetime

S0 ¼
Z

ddþ2x
ffiffiffiffiffiffi
−g

p ��
R − 2ð∂ΦÞ2 − VðΦÞ

�
−
ZðΦÞ
4

F2

�
;

ð11Þ

with coordinates ðr; t; xÞ. The bulk coordinate r can
intuitively be thought of as encoding energy scale in the
QFT: the UV corresponds to r → 0, while the IR is r → ∞.
These EMD models are a standard holographic model
capable of realizing fixed points for generic z, θ. To study
Harris-relevant disorder, we introduce a bulk scalar field ψ ,
dual to the disorder operator O in the QFT, and consider
bulk action S ¼ S0 þ Sψ , with

Sψ ¼ −
Z

ddþ2x
ffiffiffiffiffiffi
−g

p �
1

2
ð∂ψÞ2 þ BðΦÞ

2
ψ2

�
: ð12Þ

We emphasize that this differs from the usual strategy of
studying disordered QFTs by introducing replicas [3]: here,
we study a single realization of the disorder, which is
encoded by holographic duality in the boundary condi-
tions: ψðr → 0; t; xÞ ∼ rchðxÞ for a constant c. Note that the
disordered boundary condition is random in x, but static
in t.
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Wewill reveal the emergent IR fixed point by solving the
nonlinear bulk equations of gravity, subject to these
boundary conditions. Details of the construction, including
precise functional forms for V, Z, B, etc., are in the
Supplemental Material [23]. In the absence of disorder,
the metric is given by

ds2 ¼ 1

r2

�
aðrÞ
bðrÞ dr

2 − aðrÞbðrÞdt2 þ dx2
�
; ð13Þ

while the dilaton and gauge fields are

Φ ¼ ΦðrÞ; A ¼ pðrÞdt: ð14Þ

The scaling exponents z, θ are captured by the constants a0
and b0 in aðrÞ ∼ ra0 and bðrÞ ∼ rb0 . To study a finite
density black hole, we can identify the charge density with

ρ ¼ −
Zp0

ard−2
: ð15Þ

In the presence of spatially inhomogeneous ψ , an
analytical solution of the classical bulk equations cannot
be found. Indeed, with hindsight, (9) shows that a0 and
b0 will get linear corrections in ν, which are non-
perturbative corrections in ν to the actual bulk fields.
To understand how to solve these complicated bulk
equations, let us begin with a physical picture for the
radial evolution of the geometry from UV (r ¼ 0) to IR
(r ¼ ∞). If the disorder is self-averaging (the geometry
is, at leading order, independent of disorder realization),
then the geometry must be approximately homogeneous
in x: after averaging over disorder realizations, translation
invariance is restored. The bulk geometry is constructed
holographically by varying the action (11) and solving
the equation of motion for each field; e.g., for the metric,
we obtain

Rab −
R
2
gab ¼

1

2

�
TA
ab þ TΦ

ab þ Tψ
ab

�
; ð16Þ

where TA;Φ;ψ
ab denote the bulk stress tensors associated

with each of these fields, and � � � denotes disorder
averaging. We then solve for the bulk fields a, b, p,
Φ nonperturbatively, assuming that they are sourced by
the homogeneous Tψ

ab. We make the general ansatz

aðrÞ ≈ α0ra0−γaðrÞ; ð17aÞ

bðrÞ ≈ β0rb0−γbðrÞ; ð17bÞ

ΦðrÞ ≈ cΦðrÞ log r; ð17cÞ

pðrÞ ≈ π0rp0−γpðrÞ; ð17dÞ

which readily suggests a physical interpretation: γa;b;p
will encode the flow of critical exponents from the UV to
IR fixed points.
Plugging in (17) into the homogenized bulk equation of

motions, we obtain equations to solve for γa;b;p and cΦ.
Together with the equation of motion for each Fourier
mode ψðr; kÞ, we can then solve for all bulk fields and
obtain a self-consistent solution to (16). While we leave
most details of this calculation to the Supplemental
Material [23], let us describe the critical part of the
calculation. The bulk equations of motion imply that cΦ
remains constant and γa ≈ γb ≈ γp ¼ γ, which in turn obeys

γ þ r log rγ0 − ADr
2dν
d−θ−

d
z−θγ

¼ ðd − θÞr
dðdþ z − θÞ ∂rðγ þ r log rγ0Þ: ð18Þ

A is a constant depending on z and θ. Applying dominant
balance to (18), the right-hand side is negligible, and

γðrÞ ≈ z − θ

d log r
log

�
1þ AD

ðd − θÞ
2νðz − θÞ r

2dν
d−θ

�
: ð19Þ

The bulk geometry locally looks like a scaling geometry,
with z varying extremely slowly; this enables us to
analytically solve for the eventual fixed point. Numerical
solutions confirm that this fixed point is the only one
consistent with an approximately homogeneous bulk
geometry [23].
To illustrate what (19) implies, we define a dimension-

less effective disorder strength

Deff ≡Dr
2dν
d−θ−

d
z−θγ ¼ Dr

2dν
d−θ

1þDA ðd−θÞ
2νðz−θÞ r

2dν
d−θ

: ð20Þ

Notice that Deff → 0 as r → 0, since disorder is Harris
relevant. In the IR,

Deff → D� ¼ 2νðz − θÞ
Aðd − θÞ ð21Þ

approaches a universal constant. This is the disorder
strength of exactly Harris marginal disorder that supports
the IR fixed point! Since (19) implies that γ ¼ AD� at the
IR fixed point, we can solve for the IR critical exponents z�,
θ�, and we find (9). The crossover energy scale Ec between
the UV and IR fixed points occurs at the nonperturbatively
large scale

Ec ∼
�
D
ν

�z�
2ν

; ð22Þ

emphasizing the nonperturbative nature of our (approximate)
solution to the nonlinear bulk equations. It is interesting that
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such a detailed analysis of the bulk equations is needed to
reproduce what, in a field theoretic language (6), is a
perturbative one-loop effect.
It remains to explain why the geometry is self-averaging

[20]. While at OðDÞ the disorder contributed to a homo-
geneous source Tψ

ab for gravity in (16), there will also be
inhomogeneous source terms proportional to hðkÞhðqÞwith
kþ q ≠ 0. These inhomogeneous source terms would not
matter if the left-hand side of (16) was linear; since it is
nonlinear in gab, such source terms do feed back and correct
the metric beyond our ansatz. However, to correct the
disorder averaged metric, we will need at least two such
powers of the source term, meaning that there are four
factors of h. Thus, the corrections to our approximation are
OðD2Þ ¼ Oðν2Þ. Since at the IR fixed point, disorder
remains perturbatively small, this correction can be
neglected at leading nontrivial order, thus justifying that
the geometry is self-averaging at the perturbatively acces-
sible fixed point.
We studied a charge-neutral critical point with a non-

trivial hyperscaling violation θ ≠ 0. This is done by turning
off the bulk gauge field (Aa ¼ 0); Lorentz invariance in the
boundary directions demands z ¼ 1. The dilaton field will
get renormalized (cΦ is no longer constant), and the
disordered IR fixed point has critical exponents [23]

z� ¼ 1þ 6νð1 − θÞðd − θÞ
d½3dþ ðθ − 5Þθ� ; ð23aÞ

θ� ¼ θ þ 2νðθ − 1Þðd − θÞ
d½3dþ ðθ − 5Þθ� θ: ð23bÞ

We see that θ is renormalized. Interestingly, as long as
θ ≠ 0, we have a different fixed point from (9) by taking
z → 1 there, and this is because when z ≠ 1, θ is not
renormalized. Nevertheless, (9) and (23) agree in the CFT
limit: z ¼ 1 and θ ¼ 0.
Observe that (9) and (23) are consistent with the general

expectation that disorder should become exactly marginal
at the IR fixed point: if it was relevant, it would drive us to a
new fixed point; if it was irrelevant, then the IR would not
have finite disorder D�! To confirm that the disorder is
exactly Harris marginal at the IR fixed point, we compute
its scaling dimension ΔIR. In anti–de-Sitter (AdS) space,
the mass of a bulk field determines the dual operator’s
scaling dimension; for us,ΔIR is fixed by BðΦÞ. Calculating
ΔIR from BðΦÞ and demanding that it is Harris marginal
(ΔIR ¼ ½ðd − θ�Þ=2� þ z�), we find the condition that

d
z − θ

ðz� − zÞ þ 2dz − dθ
ðz − θÞðd − θÞ ðθ

� − θÞ ¼ 2ν: ð24Þ

Obviously, (9) and (23) satisfy the above equation.

Previous literature [30,31] has studied theories with
z=ð−θÞ ¼ η > 0 fixed, while z → ∞. Such theories are
analyzed in the Supplemental Material [23].
Conductivities.—We now discuss the thermoelectric

transport properties of the disordered IR fixed point. We
study the theory at temperatures T ≪ Ec, whereby the
geometry is approximately that of the IR fixed point, but
contains a black hole horizon r ¼ rþ with Hawking
temperature T. This corresponds to modifying the geom-
etry found in (17) via [14]

bðrÞ → bðrÞ
 
1 −

�
r
rþ

�
dþ dz�

d−θ�
!
; ð25Þ

where T ∼ r−½dz
�=ðd−θ�Þ�

þ . At the horizon, the entropy density
s scales s ∼ r−dþ ∼ T ½ðd−θ�Þ=z��.
In general, if we apply a temperature gradient −∇Te−iωt

and electric field Ee−iωt, the charge current Je−iωt and heat
current Qe−iωt are proportional to these sources:

�
J

Q

�
¼
�

σðωÞ αðωÞ
TαðωÞ κ̄ðωÞ

��
E

−∇T

�
: ð26Þ

Let us first discuss the dc (ω ¼ 0) conductivities. Via
the membrane paradigm [32,33], we can evaluate them
by analyzing the geometry at the horizon: see the
Supplemental Material [23]. We find that the thermoelectric
conductivities are all approximated by a Drude-like form,
signifying that the transport coefficients are dominated by
slow momentum relaxation: [14]

σdc ≈
ρ2

Γ
; αdc ≈

ρs
Γ
; κ̄dc ≈

Ts2

Γ
; ð27Þ

where

Γ ∼D�T
d−θ�þ2

z� : ð28Þ

Remarkably, (27) agrees with the perturbative result in [16]
with Harris-marginal disorder (in the IR), again confirming
the criterion in (24).
Following [34–36], we now analyze the subleading

(in D�) corrections to transport coefficients that describe
transport decoupled from momentum relaxation. As we
show in the Supplemental Material [23], in this holo-
graphic model such corrections to thermoelectric transport
coefficients are captured by the open-circuit thermal
conductivity

κdc ≡ κ̄dc − Tα2dcσ
−1
dc ∼ T

z�þd−θ�−2
z� : ð29Þ

In ordinary metals, one finds that κdc ∼ Tσdc as T → 0 with
a precise prefactor (this is called the Wiedemann-Franz
law) [14]; clearly, this is badly violated at these disordered
fixed points, since
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L≡ κdc
Tσdc

∼D�T2d−θ
�

z� ð30Þ

vanishes as T → 0. Anomalous scaling of L is not too
surprising given that the leading order results (27) exactly
cancel in κdc; indeed, it is the subleading corrections to σdc
that are responsible for nonvanishing κdc. One calls such
contributions to thermoelectric transport “incoherent” [26]
as they are decoupled from slow momentum relaxation.
Let us now extend the discussion to ac (ω > 0) con-

ductivity; for simplicity, we focus only on the electrical
conductivity σðωÞ. Following [27], we find that there
can be a Drude peak at low frequency ω ≪ T:
σðωÞ ∼ σdc=ð1 − iωτÞ, where τ ¼ M=Γ. We argue in the
Supplemental Material [23] that M ∼ T0 is a UV-sensitive
quantity, implying that τ is not universal, and exhibits
anomalous temperature dependence:

τ ∼ T−2þd−θ�
z� : ð31Þ

The holographic calculation of τ is only accurate if
τ ≫ 1=T, so there is a sharp Drude peak only when
2þ d − θ� ≥ z�. For theories that violate this inequality,
we expect no sharp features in σðωÞ until the scale ω ∼ T.
For frequencies ω ≫ T, we find that the incoherent
conductivity dominates the response function:

σðωÞ ∼ ω2þd−θ�−2
z� : ð32Þ

The various power laws found above are consistent with
recent holographic scaling theories for IR fixed points at
finite density [36,37]. Following [38], we assign the charge
density operator an anomalous dimension Φρ:

½ρ� ¼ d − θ� þΦρ: ð33Þ

Scaling analysis shows that ½σdc� ¼ d − θ� − 2þ 2Φρ [36].
In order to match with (28), we find Φρ ¼ −dþ θ�, which
implies ½ρ� ¼ 0. It has previously been observed [37] that
½ρ� ¼ 0 ensures the IR fixed point thermodynamics is
consistent with scaling theories, and thus (28) is consistent
with this expectation. A more careful analysis reveals that
the incoherent conductivity has a different IR scaling
dimension: ½σinc� ¼ 3ðd − θ�Þ − 2þ 2z� þ 2Φρ [37]. This
is consistent with (32), and a direct calculation of the dc
incoherent conductivity in the Supplemental Material [23].
Outlook.—In this Letter, we have analytically pre-

dicted the emergence of a disordered fixed point in a
strongly interacting QFT, at either zero or finite
density. The exponents z� and θ� are independent of UV
disorder strength D, as are the dc thermoelectric transport
coefficients.
The holographic formalism described here is versatile

and could be used to study the emergence of finite disorder
fixed points in more general settings, such as in background

magnetic fields [13], or in the presence of nontrivial
topological effects [39]. It would also be interesting to
generalize to models with inhomogeneous charge disorder,
where lattice constructions can reveal robust T-linear
resistivity [40].
We encourage further numerical work [41] to solve the

fully inhomogeneous Einstein equations, and analyze the
fixed points described here. The most promising direction
may be to focus on one-dimensional disordered systems;
prior work [19] constructed black holes with relevant
disorder, but their value of ν ¼ 3=4 may be beyond the
regime of validity of our perturbation theory. At strong
disorder, it may be possible for the horizon to fragment
into disconnected pieces, a fascinating phenomenon whose
implications for the boundary theory deserve further
investigation [42,43].
Our result (9) may extend beyond holographic

models. In a (charge-neutral) large-N vector model with
nondisordered fixed point with d ¼ 2, z ¼ 1, θ ¼ 0, the
mass disorder at the critical point is relevant with
ν ¼ ð16=3π2NÞ; a recent calculation [11] found that z� ≈
1þ ν at the disordered fixed point. This agrees with (9). It
would be fascinating if our results can be extended to recent
models [44,45] of compressible, disordered non-Fermi
liquids based on field theories, including those based on
Sachdev-Ye-Kitaev models which display σ ∼ ω−1.
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