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We give a tight characterization of the relation between loss tolerance and error rate of the most popular
protocol for quantum position verification, which is based on BB84 states. Combining it with classical
information, we show, using semidefinite programming, for the first time a fault-tolerant protocol that is
secure against attackers who preshare a linear amount of entanglement (in the classical information),
arbitrarily slow quantum information and that tolerates a certain amount of photon loss. We also extend this
analysis to the case of more than two bases, showing even stronger loss tolerance for that case. Finally, we
show that our techniques can be applied to improve the analysis of one-sided device-independent quantum
key distribution protocols.
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Introduction.—Securely finding out a party’s location
(position verification) or writing messages that can only be
read at a certain location are potentially impactful tasks part
of the field of position-based cryptography. These tasks are
unachievable using only classical information, because a
general attack exists even when using computational
assumptions [1]. Because of the no-cloning theorem [2]
the general classical attack does not apply if quantum
information is used instead [3,4], however, a general
quantum attack exists which requires exponential entan-
glement [5,6]. This means that hope for protocols secure
against reasonable amounts of entanglement is alive, and
indeed there has been much analysis on attacks on specific
protocols [3,7–15], and security analysis under extra
assumptions, such as the random oracle model [16–18].
One of the simplest and best-studied quantum position

verification (QPV) protocols [3,7], which constitutes the
basis of this work, is based on BB84 states. This protocol is
secure against unentangled adversaries [5], even when
multiple rounds are performed in parallel [19]. The pro-
tocol, explained in detail below, consists of one verifier (V0)
sending a BB84 state to the prover and the other verifier
(V1) sending classical information describing in which
basis the prover has to measure either the computational
basis or the Hadamard basis. The prover then has to
broadcast the measurement outcome to both verifiers, with
all communication happening at the speed of light. An
extended version of this protocol, QPVf

BB84, combines 2n
classical bits from both verifiers to determine the basis in
which to measure the qubit, and this version can be proven
to require an amount of entanglement that grows with the
classical information, making it an appealing candidate to
aim toward implementation [20].

Applying QPV experimentally encounters implementa-
tion problems, of which two are large enough that they
fundamentally force us to redesign our protocols. Whereas
the transmission of classical information without loss at the
speed of light is technologically feasible, e.g., via radio
waves, the quantum counterpart faces obstacles. First, most
QPV protocols require quantum information to be trans-
mitted at the speed of light in vacuum, but for practical
applications this is often unattainable, e.g., the speed of
light in optical fibers is significantly lower than in vacuum.
Second, a sizable fraction of photons is lost in transmission
in practice. For this loss problem, we can distinguish two
recent approaches. The first is to create protocols which are
secure against any amount of loss, which we can call fully
loss-tolerant protocols [21]. These protocols could be
excellent realistic candidates for an implementation of
QPV, but in the longer term they have two shortcomings:
they are not secure against much entanglement, and they
require fast transmission of quantum information [22,23].
In the current work, we therefore advance another

approach, by bounding the combination of loss rate and
error rate that an attacker can achieve, and thereby con-
structing what we may call partially loss-tolerant protocols;
in particular, we are able to extend the security of the
QPVBB84 and QPVf

BB84 protocols to the lossy case. For
attackers that do not preshare entanglement, but that are
allowed to perform local operations and a single simulta-
neous round of quantum communication (LOBQC) [14],
we give a tight characterization of the relation between the
allowed error and loss for QPVBB84. Importantly, we are
able to also show that these results can be adapted to show
entanglement lower bounds for the lossy version of
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QPVf
BB84, and we therefore obtain a QPV protocol that is

secure against partial loss and against attackers who pre-
share roughly n=2 entangled qubits. Nevertheless, the
above protocols have a loss tolerance of at most ∼3 dB.
To bypass this, we show that if the verifiers encode the
qubit in m ≥ 3 bases in the Bloch sphere, the protocol
becomes more loss tolerant, showing a trend of security for
a transmission rate above 1=m for unentangled attackers,
which extends to entangled attackers (with slightly worse
loss tolerance).
In particular, we show that, for m ¼ 5, the protocol is

loss tolerant even if the attackers preshare a linear amount
of entanglement in the classical information n and 70% of
the photons are lost. In practice, if telecom wavelength
(∼1550 nm) single-photon sources are used, and the
photons are sent through optical fibers with a loss of
0.15 dB=km [24], that translates to a feasible distance of
around 35 km (slightly reduced by the detector efficiency).
This means that for example, if each verifier sends 1 kB of
classical information, the protocol is secure against attack-
ers who preshare a state of at most 4 × 103 entangled
qubits. In the present work, we solve the semidefinite
programming (SDPs) for the complete range of error for
m ¼ 3, 5, thereby obtaining an exhaustive characterization
for these cases. In order to implement secure QPV for
longer distances than 35 km, it is possible to solve the
presented SDP (see Supplemental Material [25]) for larger
m, according to the requirements of the experimental setup.
Finally, we describe how our techniques can also be

applied to improve the analysis of one-sided device-
independent quantum key distribution (QKD) protocols.
We achieve our results by finding semidefinite program-
ming bounds for lossy versions of monogamy-of-entangle-
ment (MoE) games, using techniques that could be of
interest in finding bounds for other quantum-cryptographic
primitives in the presence of realistic transmission errors.
Preliminaries.—Throughout this work, we will use the

following notation: for n∈N, f is a Boolean function
f∶ f0; 1gn × f0; 1gn → f0; 1g. Basis 0 and 1 denote com-
putational and Hadamard basis, respectively. The
Hadamard transformation is denoted by H. When clear
from the context, tensor products and identity matrices will
be omitted and also quantum states in the expected value
between brackets, e.g., hψ jI ⊗ Ajψi ¼ hAi, where A is an
observable and jψi a quantum state. Dð·; ·Þ denotes the
trace distance. E denotes the expected value, and 1�ðaÞ ¼ 1
if � ¼ a and 0 otherwise is the indicator function. For a
random variable X, taking values on a finite set
X ¼ fx1;…; xdg, a probability distribution p is specified
by pxi ¼ Pr½X ¼ xi�; xi ∈X, and p can be represented by a
probability vector p ¼ ðpx1 ;…; pxdÞ. The set of all proba-
bility distributions p overX isΔd−1 ¼fp∈RdjPxi∈Xpxi ¼
1;pi ≥ 0g, which is known as the probability simplex, and it
is a (d − 1)-dimensional manifold.
The QPVη;f

BB84 protocol and its general attack.—A
generic one-dimensional (the main ideas generalize to

higher dimensions) QPV protocol is described in the
following way: two verifiers V0 and V1, placed on the left
and right of P, send quantum and classical messages to P at
the speed of light, and she has to pass a challenge and reply
correctly to them at the speed of light as well. The verifiers
are assumed to have perfectly synchronized clocks and if
any of them receives a wrong answer or the timing does not
correspond with the time it would have taken for light to
travel back from the honest prover, the verifiers abort the
protocol. Moreover, the time consumed by the prover to
perform the challenge is assumed to be negligible.
We introduce a variation of QPVBB84 where we consider

that the quantum information sent through the quantum
channel between V0 and P can be lost. Let η be the
transmission rate of this channel. We also consider that an
honest party is assumed to have error rate perr, and thus will
also respond with a wrong answer sometimes. This error
can arise, for example, either from measurement errors or
from noise in the quantum channel where the qubit is sent
through. We define one round of the lossy-function-BB84
QPV protocol, denoted by QPVη;f

BB84, as follows:
Definition 1.—One round of QPVη;f

BB84 consists of the
following: (1) V0 and V1 secretly agree on two random bit
strings x; y∈ f0; 1gn, and V0 prepares the EPR pair jΦþi.
(2) V0 sends one qubitQ of jΦþi and x to P, andV1 sends y
to P, coordinating their times so that Q, x and y arrive at P
at the same time. The classical information is required to
travel at the speed of light, however, the quantum infor-
mation can be sent arbitrarily slow. (3) Immediately, P
measuresQ in the basis fðx; yÞ and broadcasts her outcome
to V0 and V1. If the photon is lost, she sends ⊥. (4) Verifier

V0 performs the measurement fVfðx;yÞ
0 ; Vfðx;yÞ

1 g, where

Vfðx;yÞ
i ¼ Hfðx;yÞjiihijHfðx;yÞ, i∈ f0; 1g to their half of

the Einstein-Podolsky-Rosen (EPR) pair. Let a and b
denote answers that V0 and V1 receive, respectively. If
both a and b arrive on time and a ¼ b, the verifiers record
“C”, “⊥”, and “W”, if the responses are correct (i.e.,
matching V0’s measurement outcome), ⊥ or wrong,
respectively. If either a or b do not arrive on time or
a ≠ b, the verifiers output ‘↯’ (abort).
The protocol QPVη;f

BB84 consists of sequentially executing
r rounds.
The above description corresponds to the purified

version of the originally stated QPVf
BB84 (for η ¼ 1), which

is equivalent to it. In every round, an honest party will
reproduce outcomes such that the verifiers will record “C”,
“⊥”, “W”, and “↯” with probability pC ¼ ηð1 − perrÞ,
p⊥ ¼ 1 − η, pW ¼ ηperr, and p↯ ¼ 0, respectively. This
defines a probability vector p ¼ ðpC; p⊥; pW; p↯Þ. For
η ¼ 1, perr ¼ 0, y∈ f0; 1g and fðx; yÞ ¼ y, one recovers
QPVBB84 [3].
The most general attack to a one-dimensional QPV

protocol is to place an adversary betweenV0 and the prover,
Alice, and another adversary between the prover and V1,
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Bob. Let q be the number of qubits that Alice and Bob each
have as part of some preshared state at the beginning of the
protocol. A general attack of the ith round of QPVη;f

BB84
consists of the following: (1) Alice intercepts the qubit Q
and applies an arbitrary quantum operation to it and to her
qubits, possibly entangling them. She keeps part of the
resulting state, q qubits at most, and sends the rest to Bob.
Since the qubit Q can be sent arbitrarily slow by V0 (the
verifiers only time the classical information), this happens
before Alice and Bob can intercept x and y. At this stage,
Alice, Bob, and V0 share a quantum state jψ ii of 2qþ 2
qubits. (2) Alice intercepts x and Bob intercepts y, and they
apply a unitary Ui;x

A and Ui;y
B on their local registers,

respectively. Alice sends a part of her local state and x
to Bob, and Bob sends a part of his local state and y to
Alice. Denote by ρi;xy their joint state. (3) Each party
performs a POVM fAi;xy

a g and fBi;xy
b g, a; b∈ f0; 1;⊥g, on

their registers and they send their outcomes a and b to V0

and V1, respectively.
The tuple fρi;xy; Ai;xy

a ; Bi;xy
b gx;y;a;b ≕ Si, where ρi;xy is

described by jψ ii and Ui;x
A and Ui;y

B , will be called a
“(q-qubit) strategy.” In every round of the protocol, the
attackers will pick a strategy Si that can depend on the
previous rounds. A strategy Si will induce a probability
vector qi ¼ ðqiC; qi⊥; qiW; qi↯Þ, where the subscripts have
the same interpretation as above and the probabilities are
given by

qiC ¼
X

a∈ f0;1g;x;y
Tr½ρi;xyVfðx;yÞ

a Ai;xy
a Bi;xy

a �=22n;

qi⊥ ¼
X
x;y

Tr½ρi;xyAi;xy
⊥ Bi;xy

⊥ �=22n;

qiW ¼
X

a∈ f0;1g;x;y
Tr½ρi;xyVfðx;yÞ

a Ai;xy
1−aB

i;xy
1−a�=22n;

qi↯ ¼
X

a≠b∈ f0;1;⊥g;x;y
Tr½ρi;xyAi;xy

a Bi;xy
b �=22n:

An attack is successful if the verifiers cannot distinguish if
their data came from the distribution p…p (r times) or
from q1…qr.
Exact loss-tolerance and sequential repetition of

QPVη
BB84.—Whereas QPVBB84 can be perfectly broken

by attackers who preshare one EPR pair, in [33] it was
proven its security against unentangled attackers. Later on,
introducing MoE games [19], see below, it was shown that
the optimal probability that the attackers are correct is
qC ¼ cos2ðπ=8Þ, achieved by the strategy STKFW ¼
fjϕihϕj; Ay

a ¼ δa0; B
y
a ¼ δa0g (the subscript refers to the

author’s names) where jϕi ¼ cosðπ=8Þj0i þ sinðπ=8Þj1i,
leading to qTKFW ¼ ½cos2ðπ=8Þ; 0; sin2ðπ=8Þ; 0�. The gen-
eral attack to QPVBB84 for unentangled attackers is
described as above with q ¼ 0. Notice that, since they

share no entanglement, any quantum operation that Bob
could perform as a function of y in step 2 can be included in
Alice’s operation (see, e.g., [5,19]). Moreover, the fact that
q ¼ 0 does not restrict the dimension of the state ρ in step 3,
since Alice can have arbitrary local ancillary systems.
Consider the lossy-QPVBB84 protocol, recovered for

fðx; yÞ ¼ y∈ f0; 1g in QPVη;f
BB84. On the one hand,

STKFW is an optimal attack for η ¼ 1, if q ¼ 0. On the
other hand, let Alice make a random guess ỹ for y, measure
the qubit Q in the ỹ basis and broadcast the outcome and ỹ
to Bob. After one round of simultaneous communication
with Bob, they both know if the guess was correct. If so,
they send the outcome to the verifiers, otherwise, they
claim no photon arrived. Alice’s basis guess will be correct
half of the time and therefore, if η ≤ 1

2
, the attackers will be

correct whenever they answer. We denote this strategy by
Sguess, which leads to qguess ¼ ð1

2
; 1
2
; 0; 0Þ.

Our security approach will be based on what we
introduce as a lossy MoE game with parameter η∈ ½0; 1�
(the range of η ≤ 1

2
will become relevant when extending

the protocol), which is a generalization of a MoE game.
Definition 2.—A lossy MoE game with parameter

η∈ ½0; 1� consists of a finite dimensional Hilbert space
HV , corresponding to party V, and a list of measurements
fVy

vgv∈V on HV , indexed by y∈Y, where V and Y are
finite sets. Two collaborative parties, Alice and Bob, with
associated Hilbert spacesHA andHB, respectively, prepare
an arbitrary quantum state ρVAB and send ρV to V, holding
on ρA and ρB, respectively. V chooses y∈Y uniformly at
random and measures ρV using fVy

vg to obtain the
measurement outcome v. Then she announces y to Alice
and Bob. The collaborative parties make a guess of v
and they win the game if and only if both either guess
v correctly or their strategy or they both respond ⊥
with probability 1 − η. That is, for any strategy
fρVAB; Ay

v; B
y
vgv∈V∪f⊥g;y∈Y , where ρVAB is a density oper-

ator on HV ⊗ HA ⊗ HB and for all y∈Y, fAy
vgv∈V∪f⊥g

and fBy
vgv∈V∪f⊥g are POVMs onHA andHB, respectively,

and ð1=jYjÞPy∈Y Tr½ρVABI ⊗ Ay
⊥ ⊗ By

⊥� ¼ 1 − η.
In [19] it is shown that any strategy can be purified in the

sense that, enlarging the corresponding Hilbert spaces if
necessary, ρVAB ¼ jϕihϕj is a pure state for jϕi∈HV ⊗
HA ⊗ HB and fAy

vg, fBy
vg are projective measurements,

which, from now on, we will assume to be the case. In a
similar way as in [19], having a strategy to break QPVη

BB84
implies having a strategy for the lossy MoE game where V
corresponds to the verifiers with associated Hilbert space
HV ¼ C2, with Y ¼ f0; 1g and V ¼ f0; 1g, who perform
the collection of measurements fVy

0; V
y
1gy∈ f0;1g. We will

bound the probability that the attackers are correct by
numerically maximizing their probability of answer (not
responding ⊥) in the above lossy MoE game. We want to
find the maximum of qC þ qW given that q↯ ¼ 0 (otherwise
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the verifiers abort) and a probability of error perr.
The advantage of this approach is that qC þ qW ¼
1
2

P
y;a∈ f0;1ghAy

aB
y
ai no longer depends on Vy

i but only
on the state and the measurements that the verifiers use. The
amount qC þ qW has the interpretation of the probability
that the attackers answer a round without being caught.
Let Q be the set of probabilities attained by quantum

mechanics. Navascués, Pironio, and Acín (NPA) [34]
introduced a recursive way to construct a hierarchy of
subsetsQl ⊃ Qlþ1 ⊃ Q for all l∈Nwith the property that
each of them can be tested using SDP and are such that
∩l∈N Ql ¼ Q, where l corresponds to the so-called level
of the NPA hierarchy, see Supplemental Material [25],
Sec. A. Combining the NPA hierarchy with extra linear
equations involving Vy

i , we present a semidefinite program
(SDP) that upper bounds the value of qC þ qW, which is
actually tight. With this bound, since qC þ qW þ q⊥ ¼ 1,
we also find the corresponding q�⊥, where � denotes
optimal, providing the optimal η that the attackers can
reproduce, i.e., q�⊥ ¼ 1 − η. Moreover, q

Wj=⊥ ¼ perr, where

j=⊥ denotes conditioned on answering (since the attackers
want to mimic what an honest prover would do), and
therefore, q�

Cjη ¼ ð1 − perrÞ=ð1 − q�⊥Þ, which denotes the
optimal probability of being correct if they answer (given
that they have to answer with probability η). In an analogy
to [19], this quantity corresponds to the winning probability
of the lossy-MoE game, recovering their definition
for η ¼ 1.
The elements hAy

aB
y0
b i, ∀ a, b∈ f0; 1;⊥g, ∀ y,

y0 ∈ f0; 1g, will appear in the maximization problem
solvable via SDP, and are bounded by linear constraints
given by Ql. In addition to these constraints, we impose
several additional linear constraints derived from QPVη

BB84,
i.e., q↯ ¼ 0, which imply

hAy
aB

y
bi ¼ 0 ∀ a ≠ b∈ f0; 1;⊥g; ∀ y∈ f0; 1g; ð1Þ

and the prover subject to a measurement error perr, see
Proposition 1.
Proposition 1.—Let a; b∈ f0; 1g and ỹ∈ fy; y0g, where

y; y0 ∈ f0; 1g. Then,
X
ab

ð2 − kVy
a þ Vy0

b kÞhAy
aB

y0
b i ≤ perr

X
a;ỹ

hAỹ
aB

ỹ
ai: ð2Þ

For every level l of the NPA hierarchy, the following
SDP provides an upper bound of qC þ qW:

max
1

2

X
y;a∈ f0;1g

hAy
aB

y
ai;

such that the linear constraints of level l of the

NPA hierarchy and Eqs: ð1Þ and ð2Þ: ð3Þ
The numerical results for the level “1þ AB”, see code

[35], provide a nontrivial upper bound to q�C þ q�W, and, due

to the above reasoning, this translates to an upper bound to
q�
Cjη, which we denote by wðηÞ, i.e., q�

Cjη ≤ wðηÞ, see Fig. 1
for a numerical representation of wðηÞ. Moreover, the
results are tight, since the upper bound is reached by the
strategy consisting of playing the convex combination of
STFKW, with probability (2η − 1), and Sguess, with proba-
bility 2η. In Fig. 2 there are represented the numerical
solutions in the form of q ¼ ðqC; q⊥; qW þ q↯Þ∈Δ2, which
coincide with the straight line given by the two points
qTKFW and qguess, which corresponds to the convex combi-
nations of the two above strategies. This is wrapped up in
the following result.
Result 1.—Given that the (nonentangled) attackers

answer with probability η and never respond inconsistent
answers, the optimal probability that they are correct in a
round of QPVη

BB84 for η∈ ½1
2
; 1� is

FIG. 1. Numerical representation of the functions wðηÞ (black
dots) and w̃ξðηÞ (gray dots) obtained by SDPs.

FIG. 2. Probability simplex Δ2 for probabilities taking values
on X ¼ fC;⊥; Ig. Black dots correspond to numerical solutions
of (3) for l ¼ 2. The dark region is the set of probabilities that
Theorem 2 excludes and the black straight line is the intersection
between Δ2 and the plane γCpC − γ⊥pγ⊥ − γIpI ¼ 0.
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q�C ¼ cos2
�
π

8

�
ηþ sin2

�
π

8

�
ð1 − ηÞ: ð4Þ

After r sequential rounds, the verifiers have to decide to
either accept or reject the prover’s location. Consider the
following relaxation where the verifiers categorize wrong
and abort answers identically, i.e., they count them as
incorrect (I) answers. Denote by ai ∈ fC;⊥; Ig whether the
answer they recorded in round i was correct, no photon, or
incorrect. Consider the following payoff function TiðaiÞ ¼
sin2ðπ=8Þ1CðaiÞ − sin2ðπ=8Þ1⊥ðaiÞ − cos2ðπ=8Þ1IðaiÞ, for
every round i of the protocol. Let Γr ¼

P
r
i¼1 TiðaiÞ

be the total “score” after r rounds. For an honest
prover (HP), for every i, E½THP

i � ¼ sin2ðπ=8Þηð1 − perrÞ−
sin2ðπ=8Þð1 − ηÞ − cos2ðπ=8Þηperr ≕ αðη; perrÞ, and there-
fore E½ΓHP

r � ¼ rα for simplicity we will assume the
dependence on η and perr implicit. Similarly, let Γatt

r denote
the total score that the attackers (att) get.
Theorem 1.—Let η and perr be such that α > 0. Then,

any sequential strategy that attackers who do not preshare
entanglement but are allowed to do LOBQC to break
QPVη

BB84 fulfills that E½Γatt
r � ≤ 0. Moreover, the probability

that the attackers obtain a total score rα, which is the
expected value for an honest prover, is exponentially
small: Pr½Γatt

r ≥ rα� ≤ e−rα
2=2.

Theorem 1 shows that there is a way to distinguish p…p
from q1…qr with exponentially high probability, i.e., that
after r rounds the attackers will be caught. The points
ðη; perrÞ such that α > 0 correspond to the points below
wðηÞ in Fig. 1 and also below the black dots in Fig. 2.
Security of QPVη;f

BB84 against entangled attackers.—For
our security approach, consider the relaxation where the
attackers are allowed to respond different answers with
probability ξ and have a response rate in the interval
½ð1 − ηÞ − ξ; ð1 − ηÞ þ ξ�. Fix ξ ¼ 0.005 and replace the
linear constraints (3) and (2) in the SDP (3) by hAy

aB
y
bi ≤

ξ ∀ a ≠ b∈ f0; 1;⊥g, ∀ y∈ f0; 1g, and P
abð2 − kVy

aþ
Vy0
b kÞhAy

aB
y0
b i ≤ perr

P
að4ξþ hAy

aB
y
ai þ hAy0

a B
y0
a iÞ. Adding

ξ to the solution of this semidefinite programming, see [35],
we find a nontrivial bound w̃ξðηÞ on the optimal probability
of being correct with the above relaxation. See Fig. 1 for a
numerical representation of w̃ξðηÞ.
Definition 3.—We say that a state jϕi is ðΔ; ηÞ good on

input j, for Δ > 0 if there exists positive operator-valued
measure (POVMs) fAxy

a g and fBxy
b g, a; b∈ f0; 1;⊥g such

that its corresponding probability of being correct given
that fðx; yÞ ¼ j is greater than or equal to w̃ξðηÞ þ Δ.
Lemma 1.—Let jϕ0i and jϕ1i be ðΔ; ηÞ good on inputs 0

and 1, respectively. Then, Dðjϕ0i; jϕ1iÞ ≥ ηΔ.
Notice that Lemma 1 implies that the attackers cannot

use a state that is simultaneously ðΔ; ηÞ good for both
inputs 0 and 1. This implies that Alice and Bob in some
sense have to decide what strategy they follow before they

communicate. Consequently, if the dimension of the state
they share is small enough, a classical description of
the first part of their strategy yields a compression of f.
Lemma 1 allows us to redo a similar proof as in [20] using a
counting argument with ε-nets that leads to the following
theorem:
Theorem 2.—LetΔ ¼ 0.013. If the number of qubits that

the attackers preshare at the beginning of QPVη;f
BB84 for

η∈ ½0.53; 1� is such that q ≤ n=2 − 5, then, a uniformly
random function f fulfills the following with probability at
least 1 − 2−2

n
:

q�
Cjη <

1

4
ð1 − ðw̃ξðηÞ þ ΔÞÞ: ð5Þ

See Fig. 2 for the set of probabilities in Δ2 excluded by
Theorem2.Analogously toQPVη

BB84, security for sequential
repetition follows from the payoff function for entangled
(ent) attackers Tent

i ðaiÞ ¼ γC1CðaiÞ − γ⊥1⊥ðaiÞ − γI1IðaiÞ,
where ðγC; γ⊥; γCÞ ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

488625947
p Þð943;1107;22057Þ.

Theorem 1 is recovered for entangled attackers with q ≤
n=2 − 5 for αent ≔ γCηð1 − perrÞ − γ⊥ð1 − ηÞ − γIηperr. The
values for which αent > 0 correspond to the points below the
straight line in Fig. 2.
Extension to m bases.—We study an extension of

QPVη;f
BB84 where the verifiers encode the qubit inm different

bases over the Bloch sphere, similarly to [36], Chap. 5, and
[37]. Doing an analogous analysis as in the previous
sections, we show that this translates to more loss-tolerant
QPV, see Supplemental Material [25], Secs. D and E. For
the numerical cases we work out (m ¼ 3, 5),we show
security for η > ð1=mÞ without entanglement and for
η ≥ 0.36, 0.3, respectively, against entangled attackers.
Application to QKD.—In [19] security of one-sided

device-independent quantum key distribution (DIQKD)
BB84 [38] was proven using a monogamy-of-entanglement
game. We apply the above techniques to prove security of
DIQKD, finding a range of transmission rates and errors
such that the protocol is secure when one qubit is sent
between the two parties distributing the key, see
Supplemental Material, Sec. F [25]. However, the interest-
ing case is the asymptotic behavior for arbitrary number of
qubits, which we leave as an open question.
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Quantum Delta NL programme, and Jaume de Dios Pont
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