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The nature of time as emergent for a system by separating it from its environment has been put forward
by Page and Wootters [Phys. Rev. D 27, 2885 (1983)] in a quantum mechanical setting neglecting
interaction between system and environment. Here, we add strong support to the relational concept of time
by deriving the time-dependent Schrödinger equation for a system from an energy eigenstate of the global
Hamiltonian consisting of system, environment, and their interaction. Our results are consistent with
concepts for the emergence of time where interaction has been taken into account at the expense of a
semiclassical treatment of the environment. Including the coupling between system and environment
without approximation adds a missing link to the relational time approach opening it to dynamical
phenomena of interacting systems and entangled quantum states.
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The nature and role of time to decipher the physical
world is a basic and persisting research topic, in particular
the question of whether time is fundamental or emergent.
For the latter, the starting point is a static description of the
world. Time emerges from singling out a system from the
rest of the world, its environment. As such, time is a
meaningful tool to describe the relation of system and
environment, both governed by Hamiltonians distinguished
in physical or abstract (Hilbert) space. This has lead to two
strands of research for the relational approach to time. One
strand, initiated by Page and Wootters [1–5] deals with
abstract state vectors in Hilbert space and is analytically
exact, but remains to date unable to deal with general
couplings of system and environment. The second strand
uses a semiclassical approach typically in position space,
arguing that the environment is “large enough” to allow for
semiclassical approximations [6–14]. By these means, time
also emerges as the relation between system and environ-
ment which may be arbitrarily coupled.
Here, we will show how time emerges quantum mechan-

ically in the relation between system and environment
without approximations, more specifically, by retaining
arbitrary couplings between them and without the need to
resort to semiclassical approximations. That is, starting
from a static global state encompassing system and
environment we derive the time-dependent Schrödinger
equation including an arbitrary, time-dependent potential

for the system in a few transparent steps. To this end, we
will reformulate the stationary (timeless) Schrödinger
equation for the global state as an invariance principle
and single out a pure state of the system from its inevitable
embedding in the environment by projecting a specific state
of the environment onto the global state. As a byproduct
our approach constitutes a concept for analytical solutions
of complicated time-dependent interaction potentials [15].
The invariance principle for the global state jΨ⟫ as

an eigenstate of the Hamiltonian Ĥ with global eigenenergy
E reads

exp
h
iλðĤ − EÞ

i
jΨ⟫ ¼ jΨ⟫ ð1Þ

for all complex λ with dimension of inverse energy, where
⟪:j:⟫ stands for the scalar product in the global Hilbert
space. Differentiating (1) with respect to λ gives the
(timeless) Schrödinger equation ðĤ − EÞjΨ⟫ ¼ 0, often
referred to as TISE. In the following, we will only consider
real-valued λ in (1) which is sufficient to demonstrate the
emergence of time. Purely imaginary λ finds its natural
application in the emergence of temperature [16]. In order
to single out a system state from the global state, we first
partition the global Hamiltonian Ĥ into that of the system
ĤS, its environment ĤC, and their possible interaction V̂,

Ĥ ¼ ĤS ⊗ 1̂C þ 1̂S ⊗ ĤC þ V̂: ð2Þ

Wewill use environment and clock as synonyms to relate to
the aforementioned two strands of research on the emer-
gence of time. While the partition (2) of the global
Hamiltonian is natural to define a system in the first place,
it is not obvious how to single out a system state from the
global, entangled state jΨ⟫. From a quantum mechanical
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point of view, the system is inevitably embedded in its
environment on which it is therefore conditioned. Hence, a
system state jφiS is created by projecting the global state
onto a state of the environment, jφiS ¼ hχjΨ⟫ [17]. Here
and in the following we use the convention that h:j:i and
⟪:j:⟫ denote scalar products in the environment and full
Hilbert space, respectively, while jφiS and jχi stand for
states of system and environment, respectively and jΨ⟫ is
reserved for the global state. A sketch of this relational
approach is shown in Fig. 1.
Singling out the system by projection reduces the

correlations and in particular breaks the global symmetry
such that the system state does not obey the global
invariance principle. Rather, the state becomes dependent
on the symmetry parameter λ. This can be seen by
projecting the invariance equation (1) onto hχ0j, which
gives for the interaction free case, V ¼ 0,

hχ0jeiλðĤC−EÞjΨ⟫ ¼ e−iλĤShχ0jΨ⟫; ð3Þ

where we may write

jχλi ¼ e−iλðĤC−EÞjχ0i≡ ÛCðλÞjχ0i: ð4Þ

The states jχλi from the environment serve as markers to
tag the system state with λ,

jφðλÞiS ≡ hχλjΨ⟫: ð5Þ

Consistent with jφð0ÞiS ¼ χ0jΨi, we arrive at

jφðλÞiS ¼ e−iλĤS jφð0ÞiS ≡ ÛSðλÞjφð0ÞiS ð6Þ

for all symmetry parameters λ. Hence, we have derived
from the global invariance (1) without reference to any
differential equations how states of the system (6) and the
environment (4) evolve. This implies a peculiar conse-
quence on the fundamental level: states with different λ do
not have to be related, admitting also discrete symmetries
with λ replaced by a set of parameters fλng.
Using the property Û†ðλÞ ¼ Ûð−λÞ of the unitary trans-

formations in (4) and (6) we can rewrite the projected
invariance equation (3) as

hχ0jΨ⟫ ¼ ÛSð−λÞhχ0jÛCð−λÞjΨ⟫
¼ ÛSð−λÞhÛCðλÞχ0jΨ⟫; ð7Þ

which has the same form as the invariance for more familiar
symmetry transformations, e.g., the invariance of a state jψi
in coordinate space hrjψi if it is rotated by an angle θ about
a vector u with the unitary operator D̂ðθÞ ¼ e−iθu·Ĵ=ℏ while
the coordinate system is rotated backward with the rotation
matrix RðθÞ: D̂ðθÞhRð−θÞrjψi ¼ hrjψi. This opposite
behavior of states of the system and environment as a
consequence of the global invariance was dubbed by Zurek
“envariance” and used to motivate, why probabilities
correspond to measurements, colloquially known as the
Born rule [18].
In our context of letting time emerge by projection of a

globally static state, we may conclude that for the projected
global invariance (3) the state jχi from the environment
plays the role of a coordinate which is transformed with
ÛCðλÞ to compensate the transformation of the system state
jφiS with ÛSð−λÞ.
Since λ in (1) is a continuous symmetry, (6) can be

interpreted as the solution of the differential equation

i
d
dλ

jφðλÞiS ¼ ĤSjφðλÞiS ð8Þ

with initial condition jφð0ÞiS ¼ hχ0jΨ⟫. Obviously, (8) is
equivalent to the TDSE if time t is introduced through
λ ¼ t=ℏ. What we have described so far is a shortcut
derivation of the Page-Wootters relational time approach
[1] made possible by recognizing the crucial role of the
invariance principle (1).
Strictly speaking, λ is only a label without physical

meaning: any reparametrization λ ¼ fðλ̃Þ leaves the rela-
tions between environment and system invariant. However,
one can tag the system’s evolution with a reparametriza-
tion invariant observable of the environment, ACðλÞ≡
hχλjÂCjχλi∶ HC ↦ R. Although ÂC operating on the
environment is arbitrary apart from being Hermitian, a
good choice is one for which the relation between λ and AC
is simple, for example linear, if the environment is used as a
clock. This idea goes back to Poincaré [19]. For instance,
the mean position RðλÞ ¼ λPð0Þ=M þ Rð0Þ of a free

FIG. 1. Sketch of the relational state formalism. A one-
dimensional environment state χðxÞ projects out a two-dimensional
system state φðy; zÞ ∝ R

dxχ�ðxÞΨðx; y; zÞ from the three-
dimensional global stateΨðx; y; zÞ. Schematically, the clock wave
function ismultiplied toeachvertical columnofΨ andsubsequently
integrated along this direction to yield eachvalue ofφ.With such an
inherent clock dependence, the system state generally differs for
different clock states.
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particle of mass M with ĤC ¼ P̂2=2M can reliably track
dynamics for nonvanishing mean momentum Pð0Þ ≠ 0
since we can replace λ ¼ M½RðλÞ − Rð0Þ�=Pð0Þ which
represents a physical property of the environment, respec-
tively clock. For a state jχλi to clock the system, it must first
of all have overlap with the global state (see Fig. 1). To
provide a high resolution in λ, the clock state jχλi ∝P

k ake
−iλEC;k jEC;ki must be distributed over many eigen-

states jEC;ki of ĤC, with ideally jakj ≈ const [3,4,20]. This
is easy to realize, if the (physical) dimension of the clock is
much larger than that of the system, which also has the
effect that the global state can accommodate more complex
system dynamics.
We also reemphasize that the entanglement in jΨ⟫ with

respect to the states of system and environment is crucial
for nontrivial system dynamics and requires without
interaction V̂ the existence of degenerate eigenspaces of
the global Hamiltonian. Otherwise, system and environ-
ment fulfill separately a “global” invariance principle with
λS and λC, respectively, which leaves the relation λSðλCÞ
undetermined.
Finally, it is remarkable that despite the global invariance

having been broken by an arbitrary but specific choice of
jχ0i, the properties of the latter do not influence the
evolution of the system state other than specifying its
initial condition. Hence, the standard procedure of getting
rid of properties of the environment to achieve a universal
system evolution, namely tracing over the environment, is
not necessary. While it is contained in the present descrip-
tion (we could use any kind of mixed state for jχ0i),
choosing a rather structureless jχ0i is not suitable for
serving the purpose of a clock as just discussed.
So far we have provided a clarification and shortcut to

the TDSE for a system not interacting with its environment,
enabled by recognizing the power of the invariance
principle (1) which was not invoked in [1]. We have
detailed our approach since we need it in the following
to derive the TDSE for a system interacting with the
environment.
In reality, the environment will inevitably interact with

the system. This automatically ensures that the global state
jΨ⟫ is generically entangled. Hence, we should derive the
TDSE for the system with interaction V̂ ≠ 0. To this end,
we use jχðλÞi ¼ e−iSðλÞjχλi with jχλi from (4) and the
complex scalar SðλÞ ¼ R

λ dλ0Eðλ0Þ, which can be viewed as
a λ-dependent phase and normalization. Projected onto this
state, the global TISE can be written as

�
−ĤS þ EðλÞ þ i

d
dλ

�
hχðλÞjΨ⟫ ¼ hχðλÞjV̂jΨ⟫: ð9Þ

As a next step we decompose hχðλÞjV̂jΨ⟫ into a Hermitian
potential V̂SðλÞ for the system and a c number which is an
expectation value over the global state. The decomposition

is facilitated with the operators P̂Ψ ≡ jΨ⟫⟪Ψj, P̂χ ≡ 1̂S ⊗
jχðλÞihχðλÞj and P̂Ψχ ¼ P̂ΨP̂χ=Nλ, where P̂Ψχ jΨ⟫ ¼ jΨ⟫
since Nλ ¼ ⟪ΨjP̂χ jΨ⟫. We obtain

hχjV̂jΨ⟫ ¼ hχjV̂P̂Ψχ jΨ⟫
¼

h
V̂SðλÞ − ⟪ΨjV̂P̂χ jΨ⟫=Nλ

i
hχðλÞjΨ⟫; ð10aÞ

where

V̂SðλÞ ¼
hχj

�
V̂P̂Ψ þ P̂ΨV̂

�
jχi

⟪ΨjP̂χ jΨ⟫
: ð10bÞ

Inserting (10) into (9), setting EðλÞ≡ ⟪ΨjV̂P̂χ jΨ⟫=Nλ, and
rearranging terms gives the TDSE for the system with
interaction,

h
ĤS þ V̂SðλÞ

i
jφðλÞiS ¼ i

d
dλ

jφðλÞiS: ð11Þ

The effective system potential V̂S from (10b) depends
explicitly on λ and implicitly on the state of the environment,
jχðλÞi ¼ e−iλðĤC−EÞ−iSðλÞjχ0i. One can easily retrieve the
original TISE ðĤ − EÞjΨ⟫ ¼ 0 by inserting the explicit
expression for jφðλÞiS ¼ hχðλÞjΨ⟫ into (11), performing
the differentiation with respect to λ followed by a functional
derivative δ=ðδhχjÞ with respect to the state of the
environment.
Equation (11) is the main result of this work and

represents, to the best of our knowledge, the first derivation
of the time-dependent Schrödinger equation with a fully
general, Hermitian time-dependent potential V̂S from a
static global state. A pictorial representation of our for-
malism is shown in Fig. 2.
To stay as general as possible, we have made no further

assumptions regarding the interaction potential V̂. Of
course, it is reasonable (although we have seen not
necessary) to assume that the interaction potential has
negligible influence on the state jχi of the environment.
Formally, this can be expressed by ½V̂; P̂χ � ≈ 0. Thereby, jχi
becomes approximately an eigenstate of the interaction V̂,
turning jχi essentially into what has been described as a
“pointer state” by Zurek [21]. Then we can write

hχjV̂jΨ⟫ ¼ hχjP̂χV̂jΨ⟫=hχjχi ¼ hχjV̂P̂χ jΨ⟫=hχjχi

¼ hχjV̂jχi
hχjχi hχjΨ⟫ ¼ hχjV̂jχi

hχjχi jφiS: ð12Þ

The global state jΨ⟫ no longer appears and renders the
calculation of V̂S less involved. Moreover, Im½EðλÞ� ¼
⟪Ψj½V̂; P̂χ �jΨ⟫=ð2iNλÞ ¼ 0, which reflects the negligible
influence of the interaction on the environment state.
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Weclosewith thepromised concept for analytical solutions
of TDSEs involving complicated, time-dependent potentials.
The following, very simple example of coupled two-level
systems gives a flavor for the general strategy. We consider a
global Hamiltonian (2) with ĤS ¼ 0, ĤC ¼ ECσ̂C;z, and the
interaction V̂ ¼ V0ðσ̂S;x þ σ̂S;zÞ ⊗ σ̂C;x, where σ̂x; σ̂y; σ̂z are
the three Pauli matrices, with the additional label for system
or environment. Setting for simplicity EC ¼ V0 ≡ 1, we
explicitly get

Ĥ ¼

0
BBB@

1 1 0 1

1 −1 1 0

0 1 1 −1
1 0 −1 −1

1
CCCA; ð13Þ

with eigenvaluesE� ¼ � ffiffiffi
3

p
, where both of them are doubly

degenerate. One eigenvector of E− in the basis
fj↑S↑C⟫; j↑S↓C⟫; j↓S↑C⟫; j↓S↓C⟫g, we take for the global
state,Ψ ¼ ð1; 0;−1;−aÞT, wherea ¼ 1þ ffiffiffi

3
p

. Here, we use
SðλÞ ¼ R

λ dλ0ImEðλ0Þ without loss of generality to simplify
expressions. With

jχðλÞi ¼ eiE−λ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ acos2ðλÞ

p ½e−iλj↑Ci þ eiλj↓Ci� ð14Þ

we obtain from (10b) the effective potential

V̂S ¼ VSðλÞ · σ̂S; ð15aÞ

which enters the Schrödinger equation (11), where

VS;x ¼ VS;z ≡ cosð2λÞ þ acos2ðλÞ
1þ acos2ðλÞ ; ð15bÞ

VS;y ≡ −
ða=2Þ sinð2λÞ
1þ acos2ðλÞ ; ð15cÞ

and σ̂S ≡ ðσ̂S;x; σ̂S;y; σ̂S;zÞT. A physical realization would
be the interaction of an electronic spin-system and a
magnetic field, V̂S ¼ −BðλÞ · μ̂, with magnetic moment
μ̂ ¼ ð−eℏ=2meÞσ̂S or simply μ̂ ¼ −σ̂S=2 in atomic units.
The magnetic field has different time-dependent behavior
alongdifferent directions,B0 ¼ 2½cosð2λÞ þ acos2ðλÞ�ðex þ
ezÞ=½1þ acos2ðλÞ� andB1 ¼ −a sinð2λÞey=½1þ a cos2ðλÞ�.
By construction, we know that the solution of the TDSE

with the potential V̂SðλÞ is

jφðλÞiS ≡ hχðλÞjΨ⟫

¼ eiaλ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ acos2ðλÞ

p h
j↑SiS −

�
ae−2iλ þ 1

�
j↓SiS

i
:

ð16Þ

Although the system for which we have constructed the
time-dependent potential and the analytical solution of the
ensuing TDSE is very simple, it admits, nevertheless, an
entire class of time-dependent potentials and corresponding
solutions by changing the state jχðλÞi of the environment.
Replacing the environment with a multilevel system is a

straightforward extension with a semiclassical limit if the
density of states of the environment in the energy interval
defined by the two levels of the system becomes large. This
renders the environment “large” as compared to the system
and provides a direct link between the two research strands
for the emergence of time as discussed in the introduction.
One can also construct a more general semiclassical limit
without reference to a specific (multilevel) system with a
semiclassical state jχðλÞi from the environment and sub-
sequent application of the stationary phase approximation,
breaking implicitly the symmetry of environment and
system [22].
While these semiclassical limits are consistent with the

corresponding strand for the emergence of time, the semi-
classical approach cannot uncover quantum roots of time,
as we have worked them out here in the form of two
conditions: (i) a global state exists which respects the
invariance principle (1) with the global Hamiltonian and
(ii) the global Hamiltonian can be decomposed into a
Hamiltonian ĤS for the system, its environment ĤC, and
their interaction V̂. With projecting the invariance principle
onto an arbitrary state of the environment and all its
λ-dependent variants generated by “rotating” the state with
ĤC, these two conditions suffice to formulate a time-
dependent Schrödinger equation for the system with a time-
dependent potential. Thereby, we advance the relational

FIG. 2. Emergence of system dynamics by means of the
relational formalism. Unitary changes in the clock state induce
the system evolution through the correlations contained in the
global state. The invariance (1) of Ψ ensures the concurrent
system motion, which is governed by an effective clock-
dependent system Hamiltonian. Moreover, the entanglement in
the global state admits intricate system evolutions even for
relatively simple wave functions of the environment.
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approach to time by the crucial inclusion of interaction of
system and environment, which so far has been possible
only under very special circumstances [20].
Since projection and separation of system and environ-

ment as well as entanglement and interaction are also major
elements of decoherence, it is not surprising that our theory
has points of contact with Zurek’s decoherence theory [18]
as we have mentioned before. However, decoherence
requires time as a prerequisite: the literal meaning of
decoherence reveals it as a process in time. The successful
inclusion of interaction into the emergence of time as
outlined here renders our framework suitable to ask if
decoherence can be established along with emergent time
in the interaction of system and environment, a question we
will pursue in future work.
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