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We consider the task of device-independent quantum state certification in a network where some of the
nodes may collude and act dishonestly. We introduce the paradigm of self-testing with dishonest parties and
provide a certification protocol for the Greenberger-Horne-Zeilinger state in this framework, together with
robust statements about the fidelity of the shared state. We extend our results to the cluster scenario, where
many subgroups of parties may collude. Our findings provide a new operational motivation for the strong
definition of genuine multipartite nonlocality originally introduced by Svetlichny.
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Introduction.—With recent progress in quantum com-
munication networks, we are approaching the technological
developments required to implement protocols that go
beyond point-to-point quantum key distribution. In par-
ticular, proof-of-principle implementations of conference
key agreement [1], as well as its generalization to an
anonymous setup [2,3], have been recently realized [4,5],
showing that the power of multipartite entanglement can be
explored.
Genuine multipartite correlations, as e.g., the one

encountered in the Greenberger-Horne-Zeilinger (GHZ)
state [6], constitute the essential resource for important
network tasks, such as secret sharing [7], multiparty quan-
tum computation [8], and anonymous transmission [9].
Therefore, certifying the entanglement properties of the
state distributed in a network is essential to ensure the correct
implementation of such tasks.
Entanglement certification in a communication network

can be achieved with different adversarial levels. If the
parties in the network are honest and trust their measure-
ment apparatuses, entanglement can be verified using
quantum state tomography or entanglement witness
schemes [10]. If, however, the devices of some (steering
scenario) or all the parties (device-independent scenario)
are untrusted, i.e., they could be partially characterized or
potentially produced by an unturstworthy provider, then
multipartite entanglement can be certified using steering
inequalities [11] or Bell inequalities [12]. In particular, in
the device-independent scenario, self-testing results lead
to strong statements about the precise form of the shared
state [13]. Finally, in the network scenario, we can have yet
another adversarial level, namely some of the parties in the
network may be dishonest and, in particular, collude with

each other in order to jeopardize the state certification. In
protocols where information needs to be concealed from
some of the parties, such as in secret sharing and anony-
mous communication, the parties have an incentive to act
maliciously throughout the protocol in order to try to access
the hidden information.
The task of entanglement certification in a network with

dishonest parties was first considered in [14]. Such a
verification scheme lifted the anonymous communication
protocol of [9] to the untrusted source scenario [15].
Subsequently the certification protocol of [14] was
improved and implemented in [16], and more recently
generalized to certify all graph states [17].
Here we consider the task of entanglement certification

in a quantum communication network with dishonest
parties and uncharacterized devices. We introduce the
paradigm of self-testing with dishonest parties and self-
test the GHZ state in this framework. We apply this result to
design a protocol to certify the GHZ state in a network with
dishonest parties and also provide robust statements about
the fidelity of the shared state. Finally, we extend our
results to the cluster scenario, where different subgroups of
parties may collude during the state certification.
Network scenario.—We consider a network with N

parties (or nodes) connected to a source (or server) that
distributes an N-partite state. Every pair of parties in the
network is connected by a private classical channel. The
parties may be honest or dishonest. H, jHj ¼ k − 1,
represents the set of honest parties, and D, jDj ¼
N − kþ 1, the set of dishonest parties. While parties in
H are assumed to follow all the specifications of the
protocol, the unknown subset of N − kþ 1 dishonest
parties may deviate arbitrarily from the protocol’s
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description and even control the source in order to
jeopardize the state certification. We do not make any
assumptions about the internal working of the devices of
the honest parties, i.e., we consider a device-independent
scenario. The goal of the parties is to certify the state
distributed by the source in the presence of dishonest
parties. In the following, one of the parties plays the role of
the Verifier, who is required to be honest for the success of
the certification protocol. This assumption can be relaxed
by using a trusted common random source to pick the
Verifier, as discussed in [14,17]. For this work we assume
an identically and independently distributed (IID) setup,
i.e., that the distributed quantum state and the strategies
applied by the parties are the same in every round.
For the proposed certification scheme, we will consider a

Bell scenario involving dishonest parties. Assume that each
party receives one dichotomic input xi ∈ f0; 1g and has to
provide a dichotomic output ai ∈ f0; 1g.
In a quantum realization, the action of the honest

parties is described by measuring a binary observable

AðiÞ
xi ¼ Π0jxi − Π1jxi , where Πaijxi is the positive operator-

valued measure (POVM) element associated with outcome
ai for party i. In contrast, we associate a global observable
for the action of the dishonest parties. Since we will
consider a Bell inequality that only depends on the parity
of the dishonest parties’ outcomes, Jða⃗DÞ ¼ ⨁j∈Daj, we
can define the following observable to describe their action:

MðDÞ
x⃗D

¼
X

Jða⃗DÞ¼0

Πa⃗Djx⃗D −
X

Jða⃗DÞ¼1

Πa⃗Djx⃗D ; ð1Þ

where Πa⃗Djx⃗D is the POVM element associated with
the string a⃗D of outcomes for input x⃗D. Upon collecting
many rounds of outputs, the corresponding statistics is
described by a collection of conditional distributions
pða1…aN jx1…xNÞ, and the correlations that can arise in
the scenario with dishonest parties are of the form

pða1…aN jx1…xNÞ ¼ Tr
h�

⊗
i∈H

Πaijxi ⊗ Πa⃗Djx⃗D
�
ρ
i
; ð2Þ

where ρ is the state distributed by the source. Note that any
action of the dishonest parties (which in general is
described by a quantum channel) can be mapped into
the POVM elements describing their joint measurement.
Moreover, since the dishonest parties can apply global
POVMs, the marginal correlations of the dishonest set can
be arbitrary, and in particular correspond to a signaling
correlation.
A key ingredient of our result is a Bell inequality that

witnesses genuine multipartite nonlocality in the sense
that was first introduced by Svetlichny [18]. Specifically,
we consider the family of N-partite Svetlichny inequalities
[18,19] defined by the expression

S�N ¼
X

x⃗

ð−1Þwx⃗ðwx⃗�1Þ
2 hAð1Þ

x1 A
ð2Þ
x2 …AðNÞ

xN i; ð3Þ

where x⃗ ¼ ðx1; x2;…; xNÞ∈ f0; 1g×N is a string of N bits
that labels the parties’ inputs, andwx⃗ is the Hammingweight
of x⃗. The correlators are defined as

hAð1Þ
x1 A

ð2Þ
x2 …AðNÞ

xN i ¼
X

Jða⃗Þ¼0

pða⃗jx⃗Þ −
X

Jða⃗Þ¼1

pða⃗jx⃗Þ; ð4Þ

where a⃗ ¼ ða1; a2;…; aNÞ∈ f0; 1g×N is the string of out-
comes, and Jða⃗Þ ¼ ⨁N

j¼1aj is the parity of a⃗.
The Svetlichny inequalities read as

jS�N j ≤
L
2N−1 ≤

Q
2N−1

ffiffiffi
2

p
; ð5Þ

where LðQÞ denotes the classical (quantum) bound. The
classical bound, jS�N j ≤ 2N−1, constrains all the distribu-
tions that can be decomposed into the form

pða1a2…aN jx1x2…xNÞ

¼
Z

dρλ
X

P⊊f1;…;Ng
pða⃗P jx⃗PλÞpða⃗Pc jx⃗PcλÞ; ð6Þ

where pða⃗Pjx⃗PλÞ is an arbitrary distribution for the parties
in set subset P, and Pc is the complementary set.
By grouping the dishonest parties together, with respec-

tive observables MðDÞ
x⃗D

, as defined in (1), the Svetlichny
expression (3) can be written in terms of k-partite corre-
lators, involving the k − 1 observables of honest parties and
a joint observable of the dishonest group. The symmetries
of the Svetlichny inequalities ensure that a violation of an
N-partite inequality in this setting implies a violation of a
k-partite inequality for the noncommunicating honest
parties and the group of dishonest parties, as stated in
the following proposition.
Proposition 1.—If a strategy achieves value sN for an

N-partite Svetlichny inequality, then the same strategy
achieves value sk for a k-partite Svetlichny inequality, with

sk ≥
sN
2N−k ; ð7Þ

where k − 1 parties perform their respective individual
strategy, and N − kþ 1 parties are grouped together,
potentially performing a joint strategy, with their joint
outcome defined by a0 ¼ Jða⃗DÞ.
Proposition 1 is proved in the Supplemental Material,

Sec. A [20]. The proof relies on the fact that an N-partite
Svetlichny inequality can be decomposed as a sum of
k-partite Svetlichny inequalities. This property has been
previously explored in the context of nonlocality depth [21]
and complementarity of multipartite nonlocality [22].
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Here we show that it is also the key to construct a
certification scheme involving dishonest parties.
Self-testing with dishonest parties.—Now we prove that

a strong characterization of the distributed state and
performed measurements can be achieved when the
maximal violation of the Svetlichny inequality is observed.
For that, let us introduce a notion of self-testing that is
suitable to the scenario with dishonest parties. To make
the following expressions more concise, we take
D ¼ fk; kþ 1…; Ng, which can always be obtained by
relabeling the parties.
Definition 1.—A set of observed correlations pða⃗jx⃗Þ

self-tests the k-partite state jΦi in a dishonest parties
scenario if, for any state ρ with purification jψi compatible
with pða⃗jx⃗Þ for some measurements described by observ-

ables Að1Þ
x1 ;…; Aðk−1Þ

xk−1 ;MðDÞ
x⃗D

, there exist local isometries

fΛigk−1i¼1 for the honest parties and a global isometry ΛD

for the dishonest parties such that

Λ1 ⊗ … ⊗ Λk−1 ⊗ ΛDðjψiÞ ¼ jΦi1…k−1D ⊗ jζi; ð8Þ

where jζi denotes some uncorrelated degrees of freedom.
Additionally, the same correlation self-tests a set of target

measurements ĀðiÞ
0 ; ĀðiÞ

1 , for i ¼ 1;…; k − 1, and ĀðkÞ
x⃗D
, for

x⃗D ∈ f0; 1g×jDj, if it follows that, for all input choices,

Λ1 ⊗ … ⊗ Λk−1 ⊗ ΛDðAð1Þ
x1 ⊗ … ⊗ Aðk−1Þ

xk−1 ⊗ MðDÞ
x⃗D

jψiÞ
¼ ðĀð1Þ

x1 ⊗ … ⊗ Āðk−1Þ
xk−1 ⊗ ĀðkÞ

x⃗D
jΦiÞ ⊗ jζi: ð9Þ

Note that the self-testing statement accounts for collec-
tive operations of the dishonest parties, since one cannot
a priori exclude that all theN − kþ 1 parties cooperate as a
joint effective party. Moreover, if the dishonest set controls
the source, the self-testing correlations can be achieved
using only classical communication between the source and
the dishonest parties, with the source manipulating the
extra systems accordingly. For that reason, the best one can
hope for is to self-test an entangled state shared between the
honest parties and a single additional party, representing
the dishonest ones as a collective (which may include the
source’s system). In other words, the self-tested state jΦi
belongs to a k-partite Hilbert space. With that in mind, we
are able to show what follows.
Theorem 1.—The maximum violation of an N-partite

Svetlichny inequality with a set of dishonest parties D,
jDj ¼ N − kþ 1, self-tests that a k-partite GHZ state is
shared by the honest parties and the set of dishonest parties.
Moreover, the same correlations also self-test a set of Pauli
observables for the measurements performed by the honest
parties and the joint measurements of the dishonest parties.
Theorem 1 follows from a suitably chosen sum-

of-squares decomposition for the Svetlichny inequality,
which is based on the Clauser-Horne-Shimony-Holt

inequality [23]. From the decomposition, we derive that
the state maximally violating the Sveltichny inequality with
N − kþ 1 dishonest parties satisfies the stabilizing con-
ditions of a k-partite GHZ state [24]. We then construct the
isometries that self-test the state and the measurements
using techniques of [25]. The complete proof and a
description of the self-tested measurements are presented
in the Supplemental Material, Sec. B [20].
Theorem 1 is a stronger form of self-testing that allows

us to infer the existence of a specific shared state even in the
presence of dishonest parties. Indeed, when the dishonest
parties implement a joint measurement leading to the
maximal violation of the N-partite Svetlichny inequality,
the resulting statistics will maximally violate a k-partite
Svetlichny inequality, where now we have the standard Bell
scenario with the k − 1 honest parties and the group of
dishonest parties acting separately. As a collorary of
Theorem 1, when jDj ≤ 1 we obtain a standard self-testing
result for the Svetlichny inequalities.
Corollary 1.—The maximal violation of an N-partite

Svetilichny inequality, in the standard Bell scenario, self-
tests the N-partite GHZ state, and the respective Pauli
observables that lead to maximal violation of S�N .

Note that even though the family of Mermin-Ardehali-
Belinskii-Klyshko Bell inequalities [26–28] can be used to
self-test the GHZ state in the standard Bell scenario, it fails
to provide a self-testing statement in the presence of
dishonest parties. Indeed, the strong form of genuine
multipartite nonlocality witnessed by the Svetlichny
inequality seems to be a crucial ingredient for self-testing
in the presence of dishonest parties. It is worth mentioning
that different definitions of genuine multipartite nonlocality
have been introduced [29,30], where the decomposition
in (6) is restricted to nonsignaling or time-ordered distri-
butions with one-way signaling. In particular, in [30] it is
shown that Svetlichny’s original definition of genuine
multipartite nonlocality is inconsistent with a general
operational framework for nonlocality. Recently, the term
genuine multipartite nonlocality has been used to denote
correlations that cannot be created in a network with
independent bipartite sources (or k partite with k < N)
using only local operations and shared randomness [31,32].
Nevertheless, Svetlichny’s strong definition of genuine
multipartite nonlocality is appropriate in our scenario
because we consider a setup where the dishonest parties
may collude and perform a joint strategy, which is fairly
captured by a signaling probability distribution. The strong
form of nonlocality witnessed by the Svetlichny inequality
was also shown to have potential application for device-
independent secret sharing [33,34].
State certification in quantum networks.—We now

introduce a protocol for device-independent entanglement
certification in a network with dishonest parties.
Our first result is a qualitative statement about the

entanglement properties of the distributed state.
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Theorem 2.—If an honest Verifier observes a violation of
the Svetlichny inequality, sN > 2N−1, then Protocol 1
certifies genuine multipartite entanglement among the
honest parties and the set of unknown dishonest parties.
Proof.—By Proposition 1, the violation of an N-partite

Svetlichny inequality implies that the k − 1 honest parties
and the set of dishonest parties violate a k-partite
Svetlichny inequality in the standard k-partite Bell sce-
nario. Moreover, by (6), a violation of a k-partite inequality
in the standard Bell scenario witnesses genuine k-partite
entanglement. ▪
With the self-testing result of Theorem 1, we can go

beyond a qualitative detection of genuine multipartite
entanglement and infer the shape of the distributed state.
We recall that, in a scenario with dishonest parties, the best
one can do is to certify the state up to a joint operation on
the dishonest systems (see [14]).
Theorem 3.—If the Verifier is honest and the maximal

violation of the Svetlichny inequality is observed,
Protocol 1 certifies the N-partite GHZ state up to local
isometries on the honest parties and a global isometry on
the dishonest parties.
To prove Theorem 3, we use the self-testing result of

Theorem 1 and the freedom of operations on the dishonest
parties to reach the target N-partite state. Details are
presented in the Supplemental Material, Sec. C [20].
Theorem 3 resembles the certification guarantees as first
defined in [14]. The difference here is that, in the device-
independent scenario, the state is certified up to local
isometries in the honest parties.
The self-testing properties of the Svetlichny inequalities

can also provide robust guarantees about the distributed
state. We will now derive bounds on the device-
independent fidelity of the shared state as a function of
the observed violation. For that, we define the following
figure of merit for the network scenario:

FD
DIðsNÞ ¼ inf

ρ̃∈SðsDNÞ
max
ΛD ;Λi
i∈H

Fð⊗i∈H Λi ⊗ ΛDðρ̃Þ;ΦNÞ; ð10Þ

where ΦN ¼ jΦNihΦN j and jΦNi ¼ ð1= ffiffiffi
2

p Þðj0…0i þ
j1…1iÞ is the N-partite GHZ state, Λi denote local
channels on the system of the honest parties, i∈H, ΛD
is a joint quantum channel on the systems of the dishonest
parties D, and SðsDNÞ is the set of quantum states that
achieves a value of at least sN for an N-partite Svetlichny
inequality when the parties in D can apply a joint strategy.
The fidelity is defined as Fðρ; σÞ ¼ ðTrj ffiffiffi

ρ
p ffiffiffi

σ
p jÞ2.

Equation (10) generalizes the concept of extractability
introduced in [35] to the dishonest parties’ scenario.
Bounds on the fidelity as a function of the Bell violation
in the standard Bell scenario can be derived using the self-
testing from operator inequalities (STOPI) method intro-
duced in [35] (see also [36]). The STOPI method consists
of fixing channels fΛigi and evaluating an operator
inequality which is a function of the chosen channels,
the Bell operator in question, and two free parameters,
which we denote fk and μk for the case of the k-partite
Svetlichny inequality (see the Supplemental Material,
Sec. D [20] for details). Any solution of this operator
inequality provides a lower bound on the extractability of
the k-partite Svetlichny inequality,

FDIðskÞ ≥ fksk − μk; ð11Þ

where FDIðskÞ correspond to (10) for jDj ≤ 1. We drop the
superscript D to highlight that (11) refers to the standard
Bell scenario with k noncollaborating parties.
In the following theorem, we show that bounds for the

standard Bell scenario, (11), can be used to bound our
quantity of interest, FD

DIðsNÞ.
Theorem 4.—If an honest Verifier observes a violation sN

in Protocol 1, then the following fidelity can be certified:

FjDj¼N−kþ1
DI ≥ fk

sN
2N−k − μk; ð12Þ

where fk and μk are coefficients that bound extractability
for the k-partite Svetlichny inequalities in the standard Bell
scenario, as defined in (11).
The proof follows from a chain of inequalities that lower

bound FjDj¼N−kþ1
DI and is presented in the Supplemental

Material, Sec. C [20].
Using the STOPI method [35,36], we determine fk and

μk for k ¼ 2, 3, 4. The numerical methods, as well as
analytical conjectures for fk and μk are presented in
the Supplemental Material, Sec. D [20]. Figure 1 illustrates
the bounds for a network with four parties. We observe that
the bounds for different sizes of D are not ordered.
Intuitively, one could expect the certified fidelity to become
better as the number of dishonest parties increases, since
the protocol is effectively certifying a smaller GHZ state.
This counterintuitive behavior can be an artifact of the
employed lower bounds, where tightness may be lost in the
application of Theorem 4 and the specific channels used to

Protocol 1.

One of the parties is denoted the Verifier. Without loss of
generality we assume the Verifier to be party A1.
1. Repeat several times:

1.1 The source distributes a state to the N parties.
1.2 For each i∈ f1;…; Ng, the Verifier selects a random

input xi ∈ f0; 1g. The Verifier keeps their corresponding
input x1 and sends xi to party Ai using a private channel.

1.3 Upon receiving input xi, party Ai produces output ai and
sends it to the Verifier using a private channel.

2. The Verifier computes the value sN for the Svetlichny
inequality SþN, from the observed distribution of inputs and
outputs.
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determine fk and μk. Another possibility is that this is an
intrinsic feature of FD

DI, because asD increases the infimum
is taken over a larger set of states (those achieving the given
violation with more dishonest parties), but the maximum is
also taken over a larger set of operations (with fewer honest
parties constrained to act locally). New and tighter bounds,
or a better understanding of the capabilities of the dishonest
parties, may shed light on the behavior of the fidelity in
the presence of dishonest parties. We leave it as an open
question for future investigation.
Self-testing with cooperating clusters.—The previous

results can be extended to the scenario where several
subgroups of parties may collude. We denote it a network
with cooperating clusters; see Fig. 2. This scenario is
motivated by a network where specific sets of parties are
more likely to collaborate with each other.
The results follow from the symmetries of the Svetlichny

inequalities. Indeed, in a scenario with k disjoint clusters, a
violation of an N-partite Svetlichny inequality also implies
the violation of a k-partite Svetlichny inequality where each
party represents one cluster. Therefore it is straightforward
to see that the self-testing and entanglement certification
results derived in the previous section also extend to the
cluster scenario. For more details see the Supplemental
Material, Sec. E [20].
Discussion.—We investigated the task of device-inde-

pendent state certification in a network with dishonest
parties. We introduced the concept of self-testing with
dishonest parties and proved self-testing of the GHZ state
and Pauli measurements based on the N-partite Svetlichny
inequalities.
The Svetlichny inequalities, with their ability to witness

strong multipartite nonlocality, as defined in (6), seem to be
a crucial ingredient for our results. Indeed, we conjecture
that witnessing genuine multipartite nonlocality in the
sense originally defined by Svetlichny is necessary for
self-testing and device-independent entanglement certifi-
cation with dishonest parties.
We applied the self-testing results to design a protocol to

certify the GHZ state in a network with dishonest parties.

Our protocol witnesses genuine multipartite entanglement
among the honest parties and the set of dishonest parties
and also allows us to bound the fidelity of the distributed
state with an N-partite GHZ state. Our results are proved
under the IID assumption, i.e., that the state distributed by
the source and the strategies of the parties are the same in
every round of the protocol. An interesting outlook is to
investigate how to drop this assumption in order to consider
a fully adversarial scenario.
The results derived in this work have a direct application

to relaxing the trusted source assumption for network
protocols based on the GHZ state, similarly to what was
done in [15]. It is interesting to ask whether we can extend
the results to self-test other classes of multipartite states in
the presence of dishonest parties. In particular, a protocol to
certify theW state [37] can lift the anonymous transmission
protocol of [38] to the untrusted source scenario.
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FIG. 1. Bounds on the fidelity as a function of the violation of a
four-partite Svetlichny inequality. The curves represent scenarios
with a different number of dishonest parties.

(a) (b)

FIG. 2. (a) Effective network for self-testing, where each cluster
is treated as a single party. (b) Corresponding pictorial repre-
sentation of a network with cooperating clusters. Shaded blue and
red regions indicate nodes that are likely to collude.
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