Horváth and Markoš Reply: 1. In Ref. [[1](#page-1-0)] (Letter) we calculated the infrared (IR) effective counting dimension d_{IR} [\[2](#page-1-1)–[4\]](#page-1-2) of critical states in 3D Anderson models, inferring two novelties: $(m1)$ Space effectively occupied by a critical electron is of dimension $d_{IR} \approx 8/3$. Dimension d_{IR} governs IR scaling of properly defined effective volume and is unique in that role [[4\]](#page-1-2). It is the maiden estimate of such a quantity in the Anderson context. $(m2)$ Values of d_{IR} in studied classes $(O, U, S, AIII)$ coincide to about two parts per mill with comparable individual errors. We dubbed this superuniversality in d_{IR} since other critical indices differ to a much larger degree.

2. In Ref. [[5\]](#page-1-3) (Comment) Burmistrov raises objections to $(m1)$ and $(m2)$. Burmistrov $(B1)$ conjectures that $d_{\text{IR}} = f_m(3)$, where $f_m(\alpha)$ is the "singularity spectrum" of critical states in the moment multifractal (mMF) method [\[6\]](#page-1-4); (B2) combines it with older numerical results on f_m [\[7\]](#page-1-5) to argue that our d_{IR} analysis is affected by systematics; and (B3) proposes that discrepancy arises because our procedure does not assume $\langle \mathcal{N}_\star \rangle_L$ asymptotics predicted by mMF.

3. (B1) is conjectural since it lacks the proof that an exact multifractal (MF) representation of $\langle \mathcal{N}_{\star}\rangle_L$, namely [[8](#page-1-6)]

$$
\langle \mathcal{N}_{\star} \rangle_{L} = \int_{-\infty}^{\infty} d\alpha \, v(\alpha, L) L^{f(\alpha, L)} \min\{1, L^{D-\alpha}\} \quad (1)
$$

implies $\langle N_{\star}\rangle_L = h_{\star}(L)L^{f_m(3)}$, where h_{\star} is such that $\forall s > 0$ lime $L^{-\delta} \max_{k} [h_{k}(L)] \geq 0$. The sin $\forall \delta > 0$: $\lim_{L \to \infty} L^{-\delta} \max\{h_{\star}(L), 1/h_{\star}(L)\} = 0$. The singularity spectrum $f(\alpha) = \lim_{L\to\infty} f(\alpha, L)$ in the MF (not mMF) method is the dimension of the set of points x for which $\psi^+\psi(x) = L^{-\alpha}$. Precise definitions are given in [[8](#page-1-6)]. Without this proof, $(B2)$ and $(B3)$ are conjectures as well.

4. Moreover, $(B1)$ lacks support in raw d_{IR} data. Indeed, the left panel in Fig. [1](#page-0-0) shows finite-L dimension $d_{\text{IR}}(L) \equiv$ $d_{\text{IR}}(L, s = 2)$ (lim_{L→∞} $d_{\text{IR}}(L) \equiv d_{\text{IR}}$; Eq. (7) in [\[1](#page-1-0)]) together with its mMF representations [\[8](#page-1-6),[9](#page-1-7)]. Parabolic mMF severely overestimates $d_{IR}(L)$, while full (quartic) mMF [\[9\]](#page-1-7) does the opposite. Neither reflects large-L

FIG. 1. Left: mMF predictions [\[8](#page-1-6)[,9](#page-1-7)] for $d_{IR}(L, 2)$ vs data. The two-power fit describes $\langle N_{\star}\rangle_L$ over the entire studied range $(6 \le L \le 160)$ and guides the eye. Right: Stability of d_{IR} determination (see text). mMF prediction is based on (B1) and Ref. [\[7](#page-1-5)].

tendencies of $d_{IR}(L)$ at state-of-the-art volumes. The mMF asymptotic term [Eq. (3) in Comment] is almost off scale. Lacking contact (direct or indirect) with data, $(B1)$ is in fact a hypothesis rather than conjecture. Note that our data were greatly extended for this purpose.

5. The claim that our analysis assumes "purely powerlaw-like scaling" of $\langle N_{\star}\rangle_L$ is not true. To convey the related basics explicitly, note that $\langle \mathcal{N}_{\star} \rangle_L = h_{\star}(L) L^{d_{\text{IR}}}$, where $h_{\star}(L)$ varies slower than any nonzero power for $L \to \infty$. While h_{\star} is unknown, using any such $h(L)$ to model (fit) $\langle \mathcal{N}_{\star} \rangle_L$ is guaranteed to yield correct d_{IR} if the analysis includes a reliable $L \rightarrow \infty$ limit. In the Letter, we used $h(L)$ associated with linear $d_{IR}(1/L)$, namely $h(L) = a \exp(c/L)$. [Both $h(L)$ and $d_{IR}(1/L)$ would be constant in the pure-power case.] To check for sufficiency of available volumes, we fit in a sliding window $[L/2, L]$,
with results (88 < I < 160) in the right panel of Fig. 1. We with results (88 $\leq L \leq 160$ $\leq L \leq 160$ $\leq L \leq 160$) in the right panel of Fig. 1. We emphasize that each plotted point is an *extrapolated* d_{IR} . Saturation at $L \approx 96$ substantiates the stability of our analysis. The red band arises from an overall fit in the stable range. It lies at 2 parts per mill from $8/3$ (gray band) and far away from mMF prediction.

6. Given the reasoning in 3, 4 and 5, we consider Burmistrov arguments based on combination of $(B1)$ and $(B2)$ a bridge too far, especially when it comes to very fine quantitative resolution needed in the Comment. In their current form, these arguments do not affect the gist of $(m1)$ and $(m2)$.

7. The present debate opens doors to studies of potential loopholes in saddle point (Gaussian) mMF orthodoxy in the geometric description of Anderson criticality. One possibility is that $f_m \neq f$ [\[8](#page-1-6)] which would entail that Anderson multifractals are not exactly self-similar [\[10\]](#page-1-8). Recent multidimensional analysis [[11](#page-1-9)] favors this scenario.

8. The Comment loses sight of the conceptual novelty in d_{IR} wherein effective numbers lead to well-defined *effective* subsets of a probability sample space and unique effective dimension [\[4](#page-1-2)]. This has no analog in MF formalism working with a one-parametric family of fixed subsets. In that vein, the (hypothetical) " d_{IR} is nothing but $f(d)$ " [read $f_m(d)$] reminds us of " π is nothing but $22/7 - \int_0^1 dx x^4 (1-x)^4/(1+x^2)$," with both declarations
stripping their subjects of meaning stripping their subjects of meaning.

Ivan Horváth $\mathbf{\Theta}^{1,2,*}$ $\mathbf{\Theta}^{1,2,*}$ $\mathbf{\Theta}^{1,2,*}$ and Peter Markoš^{3,†}

¹Nuclear Physics Institute CAS

25068 Řež (Prague), Czech Republic

- ²University of Kentucky
- Lexington, Kentucky 40506, USA
- ³Department of Experimental Physics
- Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

Mlynská Dolina 2, 842 28 Bratislava, Slovakia

Received 5 December 2022; accepted 6 September 2023; [pub](https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.139702&domain=pdf&date_stamp=2023-09-26)lished 26 September 2023

DOI: [10.1103/PhysRevLett.131.139702](https://doi.org/10.1103/PhysRevLett.131.139702)

* ihorv2@g.uky.edu

- † peter.markos@fmph.uniba.sk
- [1] I. Horváth and P. Markoš, [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.129.106601) **129**, 106601 [\(2022\).](https://doi.org/10.1103/PhysRevLett.129.106601)
- [2] I. Horváth and R. Mendris, Entropy 22[, 1273 \(2020\)](https://doi.org/10.3390/e22111273).
- [3] A. Alexandru and I. Horváth, [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.127.052303) 127, 052303 [\(2021\).](https://doi.org/10.1103/PhysRevLett.127.052303)
- [4] I. Horváth, P. Markoš, and R. Mendris, [Entropy](https://doi.org/10.3390/e25030482) 25, 482 [\(2023\).](https://doi.org/10.3390/e25030482)
- [5] I. S. Burmistrov, preceding Comment, Comment on "Super-Universality in Anderson Localization," [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.131.139701) 131[, 139701 \(2023\).](https://doi.org/10.1103/PhysRevLett.131.139701)
- [6] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Phys. Rev. A 33[, 1141 \(1986\)](https://doi.org/10.1103/PhysRevA.33.1141).
- [7] L. Ujfalusi and I. Varga, [Phys. Rev. B](https://doi.org/10.1103/PhysRevB.91.184206) 91, 184206 [\(2015\).](https://doi.org/10.1103/PhysRevB.91.184206)
- [8] I. Horváth and P. Markoš, [arXiv:2212.02912](https://arXiv.org/abs/2212.02912).
- [9] I. S. Burmistrov, [arXiv:2210.10539.](https://arXiv.org/abs/2210.10539)
- [10] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 3rd ed. (Wiley, New York, 2014).
- [11] I. Horváth and P. Markoš, [arXiv:2212.09806](https://arXiv.org/abs/2212.09806).