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Horvath and Markos Reply: 1. In Ref. [1] (Letter) we
calculated the infrared (IR) effective counting dimension
dir [2-4] of critical states in 3D Anderson models, inferring
two novelties: (m1) Space effectively occupied by a critical
electron is of dimension dg ~ 8/3. Dimension djz governs
IR scaling of properly defined effective volume and is
unique in that role [4]. It is the maiden estimate of such a
quantity in the Anderson context. (m2) Values of dj in
studied classes (O, U, S, Alll) coincide to about two parts
per mill with comparable individual errors. We dubbed this
superuniversality in dig since other critical indices differ to
a much larger degree.

2. In Ref. [5] (Comment) Burmistrov raises objections
to (ml) and (m2). Burmistrov (B1) conjectures that
dir = fu(3), where f,(a) is the “singularity spectrum”
of critical states in the moment multifractal (mMF) method
[6]; (B2) combines it with older numerical results on f,, [7]
to argue that our djr analysis is affected by systematics; and
(B3) proposes that discrepancy arises because our procedure
does not assume (N, ), asymptotics predicted by mMF.

3. (B1) is conjectural since it lacks the proof that an exact
multifractal (MF) representation of (N ),, namely [8]

N = /oo dav(a, L)L) min{1, LP=*} (1)

[Se]

implies (N,); = h,(L)L/»®), where h, is such that
V 6> 0:lim;_ o L™ max{h, (L), 1/hy(L)} = 0. The sin-
gularity spectrum f(a) = lim; _ f(a, L) in the MF (not
mMF) method is the dimension of the set of points x for
which ywTy(x) = L™*. Precise definitions are given in [8].
Without this proof, (B2) and (B3) are conjectures as well.

4. Moreover, (B1) lacks support in raw djg data. Indeed,
the left panel in Fig. 1 shows finite-L dimension dg (L) =
dr(L,s =2) (lim;_dr(L)=dg; Eq. (7) in [1])
together with its mMF representations [8,9]. Parabolic
mMF severely overestimates diz(L), while full (quartic)
mMF [9] does the opposite. Neither reflects large-L
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FIG. 1. Left: mMF predictions [8,9] for dig(L,2) vs data. The
two-power fit describes (N ), over the entire studied range
(6 <L <160) and guides the eye. Right: Stability of d
determination (see text). mMF prediction is based on (Bl)
and Ref. [7].
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tendencies of djg(L) at state-of-the-art volumes. The
mMF asymptotic term [Eq. (3) in Comment] is almost
off scale. Lacking contact (direct or indirect) with data,
(B1) is in fact a hypothesis rather than conjecture. Note that
our data were greatly extended for this purpose.

5. The claim that our analysis assumes “purely power-
law-like scaling” of (N,), is not true. To convey the
related basics explicitly, note that (N,); = h, (L)L,
where h, (L) varies slower than any nonzero power for
L — oo. While h, is unknown, using any such h(L) to
model (fit) (N, ), is guaranteed to yield correct dyg if the
analysis includes a reliable L — oo limit. In the Letter, we
used h(L) associated with linear dr(1/L), namely
h(L) = aexp(c/L). [Both h(L) and dir(1/L) would be
constant in the pure-power case.] To check for sufficiency
of available volumes, we fit in a sliding window [L/2, L],
with results (88 < L < 160) in the right panel of Fig. 1. We
emphasize that each plotted point is an extrapolated dig.
Saturation at L =~ 96 substantiates the stability of our
analysis. The red band arises from an overall fit in the
stable range. It lies at 2 parts per mill from 8/3 (gray band)
and far away from mMF prediction.

6. Given the reasoning in 3, 4 and 5, we consider
Burmistrov arguments based on combination of (B1) and
(B2) a bridge too far, especially when it comes to very fine
quantitative resolution needed in the Comment. In their
current form, these arguments do not affect the gist of (im1)
and (m2).

7. The present debate opens doors to studies of po-
tential loopholes in saddle point (Gaussian) mMF ortho-
doxy in the geometric description of Anderson criticality.
One possibility is that f,, # f [8] which would entail
that Anderson multifractals are not exactly self-similar
[10]. Recent multidimensional analysis [11] favors this
scenario.

8. The Comment loses sight of the conceptual novelty in
dig wherein effective numbers lead to well-defined effective
subsets of a probability sample space and unique effective
dimension [4]. This has no analog in MF formalism
working with a one-parametric family of fixed subsets.
In that vein, the (hypothetical) “dig is nothing but f(d)”
[read f,,(d)] reminds us of “zm is nothing but
22/7 — [ dxx*(1 —x)*/(1 4 x*),” with both declarations
stripping their subjects of meaning.
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