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Understanding and achieving concurrent modulation of amplitude and frequency, particularly adjusting
one quantity and simultaneously sustaining the other at an invariant level, are of paramount importance for
complex biophysical systems, including the signal pathway where different frequency indicates different
upstream signal yielding a certain downstream physiological function while different amplitude further
determines different efficacy of a downstream output. However, such modulators with clearly described
and universally valid mechanisms are still lacking. Here, we rigorously propose an easy-to-use control
strategy containing only one or two steps, leveraging the nonlinearity in the modulated systems to decouple
frequency and amplitude in a noncomputational manner. The strategy’s efficacy is demonstrated using
representative biochemical systems and, thus, it could be potentially applicable to modulating rhythms in
experiments of biochemistry and synthetic biology.
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Biological rhythms are prominently characterized by
frequency and amplitude [1,2]. Their precise quantities are
crucial to signal transduction, homeostatic maintenance,
and life health [3–5], whereas their disorders may cause
detrimental consequences [6,7]. Therefore, tuning the two
quantities appropriately and unraveling intrinsic mecha-
nisms accurately become challenging issues that have been
investigated mostly using dynamical systems tools [8–12].
Many works explored the roles of internal autoregulation
[13–15]. Besides, the significance of independent ampli-
tude modulation (IAM) and independent frequency modu-
lation (IFM) for a number of typical biophysical models
were discussed and analyzed numerically [16,17]. Both
independent modulations are fundamental and critical
because achieving them implies tunability in biorhythm
regulation. They were recently realized in specific models
by redesigning biological circuitry in a brute-force manner
without theoretical illumination [18,19].
Oscillations stemming from the Hopf bifurcation are

pervasive in biophysical context [20–22]. The Kuramoto
model is a remarkable example derived from the normal
form of this bifurcation for studying synchronization of
coupled oscillators with immobile amplitude [23]. A
generic dynamical system, which describes the emergent
biological rhythms from the Hopf bifurcation, reads

ẋ ¼ f ðx; αÞ; x∈Rn; ð1Þ

where x ¼ ½x1;…; xn�⊤, and α∈R is a bifurcation param-
eter which is typically an internal or external signal of
biological significance. The steady state xss undergoes the
Hopf bifurcation at α ¼ α� yielding a stable oscillation. To
analyze its amplitude and frequency, we generally find
below the expression in terms of y ¼ x − xss,

ẏ ¼ JðαÞyþ Gðy; αÞ þOðkyk4Þ; y∈Rn; ð2Þ

where the linear interactions are described by the
Jacobian matrix J ¼ fJijg and the nonlinear ones
the term Gðy; αÞ, whose kth element follows Gkðy; αÞ ¼Pi1;…;in≥0

2≤i1þ���þin≤3 ½g
ði1…inÞ
k ðαÞyi11 …yinn �. The Jacobian matrix J

has a pair of eigenvalues λ1;2 ¼ μðαÞ � iωðαÞ correspond-
ing to the Hopf bifurcation. The eigenvector associated
with λ1 is denoted by q∈Cn which, as we will see, is
significant for quantifying the amplitude.
Lately, IAM and IFM were achieved in Eq. (1) by using

different linear feedback controllers u ¼ Fy [24,25], see
Fig. 1(a) for a schematic diagram when n ¼ 2. For each
system to be modulated, F ¼ ffijg could be predicted
precisely through computing the normal form, whereby the
amplitude and frequency can be quantified [26]. However,
computation of the normal form is often a complicated
and experimentally unfriendly task, especially for complex
systems of high-dimension [27] which, thus, impedes a real
and even broad application of the developed control
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strategy. There is accordingly a high anticipation for
designing an easily implemented but still effective
approach with less (or even without) computational cost
for independent modulations. Such an approach could be a
ready-to-use guideline for real experiments.
In this Letter, we rigorously show a constructive role of

an appropriate form of the controller u harnessing non-
linearity in decoupling the frequency and the amplitude,
which has not been fully considered in the previous studies.
By leveraging this unique feature, we design a universal
strategy to accomplish IAM and IFM directly and effi-
ciently [Fig. 1(b)]. Though its principle is established by
using the normal form, it can be practically implemented
using very little knowledge of dynamical systems and even
less computational effort. Its practical usefulness is also
validated in complex biophysical systems or networks of
high or even infinite dimension.
Theory in general.—First, we demonstrate how the

amplitude as well as the frequency is quantified using
the normal form for designing an effective controller. For
system (1), its normal form undergoing the Hopf bifurca-
tion, by standard invertible coordinate changes [see [26]
and Supplemental Material (SM), Sec. 1 [28] for detailed
procedures], is obtained as

ż ¼ ðμ� iωÞzþ ηz2z̄þOðkzk4Þ; z∈C; ð3Þ

where η∈C, and χ ≔ ℜðηÞ is the first Lyapunov coeffi-
cient. Thus, we have the following proposition.
Proposition 1.—In system (3), μ and ω depend only

on Jij, while χ depends on both Jij and g
ði1…inÞ
k . So, we can

write μ ¼ μðJijÞ, ω ¼ ωðJijÞ, and χ ¼ χðJij; gði1…inÞ
k Þ.

Although system (3) has a limit cycle whose frequency
and amplitude are calculated, by considering the terms up
to the third order, as F ¼ ω=2π and A ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
−μ=χ

p
, this

cycle actually is a projection of the original periodic orbit

that we desire to control in n-dimensional space [26]. Thus,
we establish a correspondence between these two orbits.
Precisely, the frequency and the amplitude of each com-
ponent xi, denoted, respectively, by Fi and Ai, follow the
theorem below (proved in SM, Sec. 1 [28]).
Theorem 1.—In system (1), the frequency and the

amplitude of xi, corresponding to the periodic orbit aroused
by the Hopf bifurcation, can be calculated, respectively, as
Fi ¼ F ¼ ω=2π and Ai ¼ 4kqik

ffiffiffiffiffiffiffiffiffiffiffi
−μ=χ

p
, where qi is the

ith element of the eigenvector q.
With this, we now briefly review the efficacy as well as

the limitation of the linear controller u ¼ Fy [25], before
proposing a nonlinear one. The controller should satisfy
the bifurcation- and the scale-invariance conditions. The
former one ensures the invariant critical parameter α� for
the Hopf bifurcation, while the latter one guarantees that
all amplitudes change consistently, i.e., Ai=Aj is static for
all i, j. The linear controller is indeed a perturbation made
on the Jacobian matrix J. Therefore, by Proposition 1 and
Theorem 1, an undesigned linear controller may change the
frequency and the amplitude simultaneously. Computing
the normal form is thus unavoidable for decoupling the two
quantities, which is necessary for achieving IAM and IFM.
However, it may not be an easy task [27] especially for
high-dimensional systems (refer to the tedious computation
shown in SM, Secs. 1 and 2 [28]).
To overcome this limitation, we here propose a controller

harnessing nonlinearity which is underappreciated before.
Specifically, we design it as a perturbation in only the

nonlinear coefficients gði1…inÞ
k . Rigorously, such a controller

satisfies

u ¼ Oðkyk2Þ or u ¼ Oðkyk3Þ; ð4Þ

which follows the theorem below (proved in SM,
Sec. 3 [28]).
Theorem 2.—If a controller to system (1) is designed

as (4), then (i) the frequency F of the periodic orbit aroused
by the Hopf bifurcation remains static, whereas the
amplitudes Ai changes, and (ii) the bifurcation- and the
scale-invariance conditions are valid.
We therefore approach a surprising conclusion that, for

system (1), any controller that regulates only nonlinear
terms can decouple the frequency and the amplitude
spontaneously. This conclusion suggests that computing
the normal form explicitly is unnecessary for independent
modulations, though we later compute them tediously
in several examples and use Theorem 1 to validate our
rigorous findings.
With the uncovered spontaneous-decoupling mecha-

nism, we are ready to design specific controllers for
IAM. According to Theorem 2, the only requirement is
to design a controller u with biologically plausible form
that satisfies the form described in (4). As we will see later,

(a)

(b)

FIG. 1. (a) Achieving IAM or IFM by a linear controller
requires computing the normal form. (b) Achieving IAM and
IFM needs, respectively, one and two steps without computation
by harnessing nonlinearity (zigzag) in the controller.
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this can be achieved in representative biophysical systems,
including the gene regulatory and the neuronal oscillators.
Compared with IAM, achieving IFM is a more compli-

cated task because altering the frequency must require a
linear controller, which also changes the amplitude without
delicate design (computing the normal form explicitly).
Thanks to Theorem 2, we can now propose a two-step
strategy [Fig. 1(b)] without tedious computation.
Step 1: Applying a linear controller u ¼ LðΔωÞy, with

L∈Rn×n, satisfying the bifurcation- and scale-invariance
conditions to change the frequency by Δω=ð2πÞ. Though
the frequency is modulated, the amplitude deviates from the
original level (Proposition 1 and Theorem 1). A recovery
step is therefore needed.
Step 2: Designing a nonlinear controller satisfying

Eq. (4) to restore the amplitude. According to Theorem
2, the frequency remains as ðωþ ΔωÞ=ð2πÞ. Therefore, an
oscillation with modulated frequency and static amplitude
is eventually obtained. The following theorem guarantees
the existence of the control matrix L used in Step 1, where
we also provide a specific design for system (1) when
n ¼ 2. See SM, Sec. 4 [28] for its proof and the design of L
when n > 2.
Theorem 3.—Assume that ℜðqiÞℑðqjÞ ≠ ℜðqjÞℑðqiÞ

for any i ≠ j. Then, there exists a matrix L ¼
flijðΔωÞg∈Rn×n, with at most 2n nonzero elements,
such that, if the controller u ¼ Ly is applied to system
(1), then the frequency F of the periodic orbit aroused
by the Hopf bifurcation becomes ðωþ ΔωÞ=ð2πÞ.
Moreover, u satisfies the bifurcation- and the scale-
invariance conditions. Specifically, when n ¼ 2, l11 ¼
l22 ¼ 0, l12 ¼ aJ12, and l21 ¼ aJ21, where
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2ωΔωþ Δω2Þ=ðJ12J21Þ

p
− 1.

We remark that the condition used in Theorem 3 is a
common case for applications. Specifically, it is satisfied
for all examples considered in the present work. Moreover,
jΔωj cannot be arbitrarily large, because it may change the
sign of the first Lyapunov coefficient χ, which makes the
periodic orbit unstable. Generally, the feasible range of
Δω is mathematically nonempty but could be determined
numerically.
Note that the design of L in Theorem 3 does not require

computing the normal form. We only need to do basic
linear algebra (see SM, Sec. 4 [28]). In light of Theorems 2
and 3, we have now proposed a one-step (respectively,
two-step) control strategy harnessing nonlinearity for IAM
(respectively, IFM) in a noncomputational manner.
Practical application therefore does not require an under-
standing of the center manifold or the normal form theories,
however, they are essential for validating our results.
Demonstration in a genetic oscillator.—To validate the

efficacy of the nonlinear controller and compare it with a
linear one in the form of u ¼ Fy, we first consider a
representative genetic oscillator describing the interaction
between mRNA (X) and associated protein (Y) [29],

Ẋ ¼ k1SK
p
d=ðKp

d þ YpÞ − kdxX;

Ẏ ¼ ksyX − kdyY − k2ETY=ðKm þ Y þ KIY2Þ: ð5Þ

This system owns a stable oscillation induced by the
Hopf bifurcation (see SM, Sec. 2 [28]). To modulate its
amplitude and frequency independently, we first apply the
linear controller u ¼ Fy, where y ¼ ½X − Xss; Y − Yss�⊤
with ðXss; YssÞ an unstable steady state surrounded by
the oscillation. Motivated by a recent biological PID
controller [30], u can be generalized as a biologically
plausible strategy incorporating the Hill-type function, e.g.,
ðX − XssÞ=ðkþ X − XssÞ ¼ OðjX − XssjÞ [25]. The results
and the prediction (Theorem 1) are presented in Fig. 2(a),
where, to measure the variations caused by the control
implementation for any concerned variable, we introduce
a quantity as Γβ ≔ βc=β0 − 1 with the variable β ∈
fA; F; Jij;…g and βc=0 taking the respective values in
the systems with and without control. Thus, ΓA=F represent,
respectively, the variations of the amplitude A and the
frequency F, and ΓJij ¼ ðJij þ fijÞ=Jij − 1 ¼ fij=Jij char-
acterizes the variation of any ingredient in J. As stated
before, designing fij of a linear controller requires tedious
computation of the normal form (see SM, Sec. 2 [28]).
We then design a nonlinear controller as uðYÞ ¼

k1ΔSK
p
d=ðKp

d þ YpÞ þ αK5
1=ðY5 þ K5

1Þ to the first equation
of system (5). It combines a perturbation of upstream
signal S and an extra Hill-type regulation. Select the
parameters particularly as K5

1 ¼ Y5
ss=4þ 5K4

dYss=4 and
α ¼ −5k1ΔSK4

d=ðY4
ss þ 5K4

dÞ. Then, the controller becomes
a simple form of uðYÞ ¼ cðY − YssÞ2 þOðjY − Yssj3Þ,
which satisfies the condition in Theorem 2. Consequently,
according to the spontaneous-decoupling mechanism,
changing the intensity c makes the amplitude independently
varied [Fig. 2(b)]. The results are also consistent with the
effect of the leading term ðY − YssÞ2 and the analytical
prediction computed from the normal form and Theorem 1
(SM, Sec. 2 [28]). Outstandingly, we also observe a
wider allowable range of the amplitude than that obtained

IAM under linear controller IAM under nonlinear controller(a) (b)

FIG. 2. IAM of system (5) achieved by (a) the linear controller
u ¼ Fy, and (b), the nonlinear controller cðY − YssÞ2 (blue:
amplitude; red: frequency). Depictions are the numerical results
(solid) and the theoretical predictions obtained by computing the
normal form (light dashed). The circles represent the simulated
results using the Hill-type function, i.e., yj=ðyj þ kÞ ≈ yj [25],
and the results obtained by using uðYÞ.
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only using the linear controller [Fig. 2(a)]. This discovery
deserves a thorough study in the future.
Though the accurate role of the intensity c in uðYÞ can

be forecast by computing the normal form (Theorem 1), it
could be direct to implement uðYÞ without prior compu-
tation in practice. For a given task, according to
Theorem 2, we only need to gradually vary c to achieve
IAM. Indeed, the nonlinearity does bring a previously
overlooked and mathematically inspired IAM strategy.
It actually possesses several hallmarks: it allows a non-
computational control, it generates an experimentally
friendly approach using one-parameter controller, and it
permits a more effective modulation, which allows a
wider-tunable range. Apart from applying the quadratic
controller uðYÞ ¼ OðjY − Yssj2Þ, using a cubic one
uðYÞ ¼ OðjY − Yssj3Þ is also beneficial to IAM (SM,
Sec. 2 [28]).
We also achieve IFM using the above-articulated

two-step control strategy to leverage the spontaneous-
decoupling mechanism induced by the nonlinearity
[Figs. 3(a) and 3(b)]. We first apply a linear controller
Ly according to Theorem 3 (Step 1), the frequency is thus
modulated with undesirable amplitude [Fig. 3(c)]. Then,
in light of Theorem 2, we design a nonlinear controller

uðyÞ ¼ ½0; cðY − YssÞ3�⊤, which indeed perturbs gð03Þ2 , to
complete the entire process of IFM (Step 2). We also
observe, from the contour maps, that the range of modu-
lation is enlarged compared with the linear controller (see
Fig. S1). Moreover, the required feedback intensities are
moderate. Analogous to IAM, the two-step strategy for
IFM can be applied without tedious computation because
only two control parameters, Δω and c, are involved. In
practice, we first vary Δω to modulate the frequency. Then
alter c to restore the amplitude. This may be achieved as a

controller with two sliders, which is not possible if we
adopt the linear controller u ¼ Fy alone. Apparently, this
two-step strategy is more practical in applications.
Demonstration in higher-dimensional systems.—We

have shown the efficacy and practical usefulness of the
nonlinear controller in the two-dimensional genetic oscil-
lator. The strategy is indeed also applicable to systems of
higher dimension. We now consider the AC-DC model
combining the toggle switch and the repressilator [31],
which sketches the protein-protein interactions: ẋ ¼ fðx;
y; z; SÞ, ẏ ¼ gðx; y; z;SÞ, ż ¼ hðx; y; z; SÞ (full model in
SM, Sec. 5 [28]). Here, signal S is the chosen bifurcation
parameter yielding the Hopf bifurcation [Fig. 4(b)]. To
modulate independently the amplitude of the protein
concentration, we first implement a biologically plausible
controller to regulate the dynamics of protein y which—
under appropriate design—satisfies uðxÞ ¼ Oðjx − xssj2Þ
(SM, Sec. 5 [28]). It meets the condition in Theorem 2, and
thus helps us achieve IAM (Fig. S4 [28]).
Apart from applying the quadratic controller, a cubic

one also exhibits the efficacy and efficiency [Fig. 4(a)].
Additionally, the controller regulating the dynamics of x or
z also works (Fig. S5). All the outcomes are well predicted
by computing the normal form (SM, Sec. 5), though it is
unnecessary to do so in practice. We also validate the
efficacy of a fixed controller for oscillations far from the
Hopf bifurcation [Figs. 4(b) and 4(c)], where the amplitudes
of all proteins are concurrently down regulated indicating
that the scale-invariance condition holds spontaneously.
Additionally, for IFM, we use a two-step control strategy
based on Theorems 2 and 3, whose detailed design and the
corresponding results are presented in SM, Sec. 5 [28].
Besides genetic or protein dynamics, our control

strategy is also helpful for mastering the neurodynamics.
Consider the well-known Hodgkin-Huxley neuron
model [20], which is usually regarded as a frequency-
modulated system. The neurodynamics obey
CV̇¼ I− ḡKn4ðV−EKÞ− ḡNam3hðV−ENaÞ− ḡLðV−ELÞ,

(a)

(c)

(b)

FIG. 3. (a),(b) Variations of the amplitude and the frequency of
the oscillation in system (5) under the control strategy harnessing
nonlinearity. Dashed lines represent isoamplitude and isofre-
quency contours. A two-step controller for IFM is highlighted.
(c) Three oscillations correspond to the highlighted circles.

amplitude

SS

Hopf

(c)(b)(a)

FIG. 4. (a) IAM in the AC-DC model achieved by intervening
the nonlinear term [β ¼ gð300Þ2 ] (solid: numerical result; dashed:
theoretical prediction). Under certain intensity, the amplitude
(blue) is greatly varied whereas the frequency (red) remains static.
(b) Bifurcation diagram with (red) and without (blue) control.
The steady state (SS) undergoes the Hopf bifurcation at
S� ≈ 0.1589. An oscillation arises when S > S�, whose amplitude
is altered by the nonlinear controller with Γβ ¼ −1 (SM S.5).
(c) The evolutions of (blue: original; red: controlled) oscillations
suggesting that the amplitudes of y and z are also suppressed
(dashed cycles: S ¼ 0.2).
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τðVÞẆ ¼ W∞ðVÞ −W, where W ∈ fn;m; hg. Following
Theorem 2, our computations in SM, Sec. 6 [28] show
that an external stimulus satisfying ΔIin ¼ cðV − VssÞ3 to
the membrane potential is sufficient and efficient for
realizing IAM.
We further demonstrate the efficacy of the nonlinear

controller in an infinite-dimensional system with two
variables, which is the reaction-diffusion counterpart of
system (5) incorporating the spatial movements of mole-
cules. The two variables thereby become Xðx; tÞ and Yðx; tÞ
whose diffusions are delineated by d1∂2X=∂x2 and
d2∂2Y=∂x2, respectively (full model in SM S.7 [28]).
Here, x represents the spatial coordinate. Applying the
two-step controller introduced before, we decrease the
frequency while the amplitude remains unaltered
(Fig. S8). Other tasks (e.g., IFM with higher frequency
or IAM) are also achieved by implementing different
control intensities or distinct strategies (SM S.7).
Though our strategy still works for the infinite-dimensional
system, the corresponding mathematical foundation needs
to be established in the future, which is beyond the scope of
the present work.
As a final example, we show the efficacy of a nonlinear

controller satisfying (4) for the Watts-Strogatz [32]
neuronal networks with different rewiring probabilities.
Leveraging the spontaneous-decoupling mechanism in
Theorem 2, we successfully modulate independently the
amplitudes of the entire population by controlling solely a
single neuron (refer to details in SM S.8).
Discussion.—Modulating independently the frequency

or the amplitude is a rapidly growing frontier of bio-
physical control. Before carrying out in vitro or in vivo
experiments, it is necessary and significant to develop a
model-based control strategy that is practical enough to
be a rigorous guideline. In this Letter, we harness the
nonlinearity in its biophysical plausible form for the
control design. It may stem from protein multimer and its
inhibitory or activatory effects [33], from synaptic inter-
action in neural dynamics [34], or from high-order
interactions [35]. We establish rigorous foundations to
support the advantage in nonlinear strategy for modulat-
ing biological rhythms. It has the capability of decoupling
—in a noncomputational manner—the frequency and the
amplitude, which can be leveraged to develop an elemen-
tary but effective controller with one or two straightfor-
ward steps. A strategy as such can be easily applied
showing the potential to help us design experimental
schemes.
For a given kinetic model, we can choose any of its

variables to design and implement a feasible controller,
among which the most effective one may be applied. While
only one variable is controlled, all the components are
concurrently modulated. This fact enables us to select, in
practice, the most accessible one (or the one requiring less
or the least consumption and modification).

The strategy proposed here belongs to feedback control
that is a promising area in mastering biological dynamics
[36,37]. It includes many theoretical and experimental
works encompassing stabilizing protein abundance [30],
balancing bistability [38], and synchronizing cell cycle [39]
with microfluidic devices. Our control strategy is also
possible for implementation at these platforms, because the
modulation can be achieved without tedious computations.
Though we propose a model-based control strategy, it

may also be applied when the model is unknown. Different
from using the linear controller for which we need to know
the full differential equations to compute the normal form, it
is not necessary to do so for the nonlinear controller. The
only information we need to acquire is the coordinate of the
steady state and the displacement of the oscillation from it.
Actually, the steady state could be located by the recently
developed methods [40–43]. Our approach can thus be
immediately implemented for the data-driven research. Yet,
there are further issues that need to be addressed.
Particularly, how to modulate an oscillation that is extremely
far from the Hopf bifurcation remains challenging.
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