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Interface Stabilization in Adhesion Caused by Elastohydrodynamic Deformation
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Interfacial instabilities are common phenomena observed during adhesion measurements involving
viscoelastic polymers or fluids. Typical probe-tack adhesion measurements with soft adhesives are
conducted with rigid probes. However, in many settings, such as for medical applications, adhesives make
and break contact from soft surfaces such as skin. Here we study how detachment from soft probes alters
the debonding mechanism of a model viscoelastic polymer film. We demonstrate that detachment from a
soft probe suppresses Saffman-Taylor instabilities commonly encountered in adhesion. We suggest the
mechanism for interface stabilization is elastohydrodynamic deformation of the probe and propose a

scaling for the onset of stabilization.
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There is a wide interest in controlling interfacial insta-
bilities, as they often affect the process in which they are
formed [1-11]. Interfacial instabilities can be a safety hazard
for batteries [12,13], limit oil recovery [14], impact proper-
ties of graphene sheets [15], enhance the mixing of fluids
[16,17], or guide the fabrication of soft materials [18-20].
A common interfacial instability is the Saffman-Taylor type,
manifested as undulating patterns formed in narrow gaps at
fluid-fluid interfaces when a lower viscosity fluid displaces a
higher viscosity fluid [21-25]. Their onset can be controlled
through low flow rates [25] or local geometry [1,2,26]. For
example, elastic deformation of a membrane ahead of the
fluid-fluid front alters the flow and suppresses viscous
instabilities [10,27]. Because of their sensitivity to the flow
profile, interfacial instabilities could potentially be manip-
ulated in contact problems, such as in adhesion, where they
are a source of energy dissipation [22,24,28-30].

Adhesion between two soft materials is ubiquitous
during contact with skin with medical adhesives or flexible
electronics [43-48]. Despite its technological significance,
studies of adhesion between two soft materials are limited,
but reveal qualitative differences from debonding from a
rigid surface [49-56]. Here we show how the mode of
debonding between a soft spherical probe and a thin
viscoelastic adhesive film is altered as the compliance of
the probe increases [Fig. 1(a)]. Saffman-Taylor instabilities
are present during the detachment of a spherical rigid probe
from a viscoelastic film (a variation of lifted Hele-Shaw
cells). However, we find that the interface stabilizes when
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the compliance of the probe increases. The spherical probes
studied are silicone elastomers for which we systematically
vary the compliance, while the opposing surface is a soft
viscoelastic pressure sensitive adhesive (PSA) film. We
hypothesize that elastohydrodynamic deformation of the
spherical probe, caused by the viscous forces within the
adhesive film during retraction, stabilizes the interface.

As control experiments, we measured the force in air
during the detachment of rigid glass probes from the
viscoelastic adhesive [thickness of b = 25 pm, Young’s
modulus ~30 kPa, Fig. 1(a)]. The adhesion measurements
are conducted on a microscope with bottom and side view
imaging [57]. During detachment, the adhesive-air inter-
face is unstable and fingers form and grow until complete
debonding [Fig. 1(c)]. A distinguishing feature of inter-
facial instabilities in adhesion is the dependence of their
wavelength A on the detachment velocity. For a Saffman-
Taylor instability, 4 scales with the film thickness (b) and
the Capillary number (Ca = n*U/y) as

A =xb/\/Ca, (1)

where 7* is the complex viscosity of the adhesive, U is the
radial velocity, and y is the surface tension of the adhesive-
air interface [23,25,27,28]. The complex viscosity accounts
for the viscoelasticity of the adhesive. We measured
adhesion for different detachment velocities and film
thicknesses (25-100 pm) and characterized fingering
wavelengths at their onset (lowest strain in the films).
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FIG. 1. (a) Schematic (not to scale) of measurements [31].
(b) Validation of Eq. (1). Data from debonding between rigid
probes and adhesive films of b = 25 (circle), 50 (triangle), and
100 pm (square). Arrows indicate the expected range for soft
probes with b = 25 pm. Unstable interface for b = 50 pm for
Eprone = 1.8 MPa (red square). (¢)—(e) Superimposed contours of
bottom view of the adhesive-air interface at different times during
retraction from probes of different moduli. Initial contact line is
in black. Interface moves radially inward during retraction.
Unstable interface (c),(d) shows fingering as opposed to a stable
interface (e).

We then compared our measurements to Eq. (1) by
determining the capillary number using the radial velocity
of the growing fingers’ apex, the complex viscosity #*, and
the surface tension (45 +2 mN/m) [31,58]. Agreement
between data and Eq. (1): Fig. 1(b), confirms the presence
of Saffman-Taylor instabilities (see Supplemental Material
[31]). In contrast, an elastic instability in the PSA would
have a wavelength that only depends on the thickness of the
adhesive (4, = 4b) [31,59-62] and quadruples as we
quadruple the film thickness. Instead, if we quadruple
the thickness, the wavelength increases by a factor of 3—12
depending on the velocity, with the wavelength decreasing
as the velocity increases, both characteristic of Saffman-
Taylor instabilities.

We then repeat the same measurements, but with silicone
probes of increasing compliance. The compliant probes are
made of polydimethyl siloxane (PDMS) of different cross-
linking ratios that were extracted after curing to remove
unreacted oligomers and treated with plasma to render their
surface hydrophilic. The soft probes have nearly identical
geometry and surface energy as the rigid probes, but with a
Young’s modulus that varies from ~2 to ~0.2 MPa [31].
We estimate the Ca of the adhesive film during the
detachment and found it comparable to values for rigid
probes that displayed Saffman-Taylor instabilities [red
arrows, Fig. 1(b)]. Detachment with the stiffer PDMS

leads to an unstable interface, but the interface stabilizes
for softer probes [Figs. 1(d) and 1(e)].

Because of confinement, the compliance of the adhesive
film is smaller than its bulk counterpart and also smaller
than all soft probes investigated [31]. While a PSA is a
viscoelastic solid, a simple stress-strain model where the
thin adhesive film is in series with a soft probe
(kpsa > kprope) Suggests a significant dissipative response
due to the complex viscosity of the adhesive [31].
Therefore, even if the adhesive film is a solid, its dynamic
response is dominated by viscoelasticity. Moreover, recent
work shows that in the case of elastic instabilities the
interface can become stable as the probe modulus
increases; the opposite of our observations [63].

As the probe compliance increases, the interface
becomes stable during detachment [Figs. 1(c)-1(e)].
Because only the compliance of the probe is varied (and
not its surface energy), the experiments suggest the
importance of compliance on interface stabilization [31].
The transition to a stable interface also has no impact on the
adhesive strength (F, in Fig. 2, inset). For the same
debonding velocity, the adhesive strength is nearly the same
for all probe moduli, without any distinction between stable
and unstable interfaces. For the sphere-plane geometry, the
adhesive strength is independent of compliance, but the
mode of failure can affect the force profile [64,65]. A small
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FIG. 2. Adhesive strength for different probes and retraction
velocities. The slope ~(21/G/v%) increases with probe surface
energy. There is no distinction in the adhesive strength for a stable
(pink) or unstable (blue) interface. Inset: debonding curve between
soft PDMS probes and adhesive films at » = 50 pm/s. Increase in
probe compliance leads decreases the slope. The maximum force

F ax 18 independent of probe modulus.
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FIG. 3.

Side and bottom view images during debonding over time. Rigid probe (a) bottom and (b) side views. Soft probe, Eygpe =

0.18 MPa (c) bottom and (d) side views. Instabilities are present during debonding from the rigid probe. Side view images (b) show
stretching of adhesive. For the soft probe (c) the interface is stable, side views (d) show probe deformation. Note the different scale and
magnification between the side and bottom views; the arrows represent the same dimension.

plateau in force was also observed with the onset of
fingering instabilities when lifting rigid plates confining
viscous fluid [29], whereas adhesion-induced elastic insta-
bilities increased the resistance to deformation leading to
higher forces [66].

We also find that stabilization of the interface is not due
to a change in probe surface energy. The relationship
between the adhesive strength (F,,,), debonding velocity
(v), and compliance is well established and given by

Fo =220 6 ()] (2)
e Csys 0 Uref ’

where G| is the intrinsic strain energy release rate, A is the
maximum contact area, C is the system compliance, v is
the debonding velocity, and n is an empirical constant, here
n = 0.4 [31,64,65,67]. Therefore, for a constant apparent
work of adhesion, we expect a linear relationship between

Finax and y /Ag/ Cyy ™4 with a slope 24/ G/ v%¢. Adhesion
follows well the established force scaling relationship, with
no departure from the linear relationship that would indicate
achange in surface energy for softer PDMS probes. Data for
the hydrophilic PDMS include the adhesive strength for
probes with elastic moduli between 0.18 and 1.8 MPa
(Fig. 2) (see Supplemental Material [31]). The linear
relationship observed across PDMS probe moduli confirms

the constant apparent surface energy. This linear relationship
also holds for probes of different surface energy, but with a
different slope (silica and hydrophobic PDMS, Fig. 2).

Side view imaging shows that transition to a stable
interface is accompanied by significant elastic deformation
of the probe, Fig. 3. The forces resisting the probe’s upward
motion within the adhesive film cause elastic deformation of
the probe and appear to be stabilizing the interface. For
hydrophilic PDMS probes, interface stabilization occurs
despite having the same intrinsic surface energy. Using
G/ E.a, we evaluate the intrinsic strain energy release rate
normalized with the contact compliance (or the elastoadhe-
sive length normalized with the contact radius) [68], where
the effective modulus is Ey = 3/4Cya, and a is the
contact radius. This quantity represents the ability of a
material to resist crack propagation through elasticity.
Changes in the relative importance between contact
compliance and surface energy in the contact region
(Gya?), Fig. 4(a), do not delineate stable from unstable
interfaces. In other words, the deformation of the probe is not
dominated by an increased contribution from the surface
energy as the probe modulus decreases.

Here, debonding occurs between a soft probe and a
viscoelastic adhesive. At any given time, the measured
force is due to surface, viscoelastic, and elastic (probe
deformation) contributions. The elastic (probe deformation)
and viscous (“flow” of the adhesive) forces are highly
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FIG. 4. (a) Elastoadhesive length normalized by the contact

radius vs effective surface energy for all probes. (b) Elasticity
parameter (¢) vs debonding velocity (v). The transition from
unstable to stable interface is observed around e¢ =1 (black
dotted line). Data include adhesive with b =25, b =50,
b =100 pm, and R between 4.5 and 14 mm and shows unstable
interface (blue) and stable interface (pink).

coupled. Elastohydrodynamic deformation occurs when
the viscous forces in a fluid are strong enough to cause
elastic deformation to an opposing surfaces [69-72].
We hypothesize that the probe deformation alters the
pressure distribution within the adhesive film, leading to
a suppression of Saffman-Taylor instabilities. The relative
importance of elastohydrodynamic deformation can be
estimated through an elasticity parameter ¢ [Eq. (3)],
obtained from nondimensionalization of the lubrication
equation [69,70,73],

*,URI.S
Eprobeb

The elasticity parameter can be viewed as a ratio between
elastic forces within the probe and viscous forces within the
adhesive film. As ¢ increases, the elastic deformation of the
probe (w) increases. For low ¢, viscous forces do not cause
probe deformation. We previously found that the dimen-
sionless central deformation (W = w/b) of a spherical
probe scales with (6¢)%4 [74].

A plot of € as a function of debonding velocity (v) shows
a clear demarcation between stable and unstable interfaces
[Fig. 4(b)]. The transition to a stable interface occurs across
different materials systems and experimental parameters:
probe modulus, radius, detachment velocity, and film
thickness. The transition between an unstable and stable
interface occurs around € = 1, when the elastic forces in
the probe begin to dominate over the viscous forces in the
adhesive film. The transition to a stable interface as the
elasticity parameter increases supports the hypothesis that
elastohydrodynamic deformation of the probes suppresses
the fingering instabilities.

As the velocity increases, the adhesive strength
increases, and stabilization of the interface shifts to higher
€ [Fig. 4(b)]. We compare the role of debonding velocity on
the probe deformation and the pressure within the film. An
increase in v will increase the pressure within the adhesive
film, which has a destabilizing tendency for the interface.
However, increasing the velocity also increases the probe
deformation, which we hypothesize stabilizes the interface.
Nondimensionalization of the lubrication equation leads to
a characteristic pressure in the fluid, p* = nvR/b?* [74]. For
a viscoelastic film, p* = y*vR/b?, therefore p* o v(!=")
with the dependence of the complex viscosity on velocity.
For our material here m = 0.725, giving p* « 1%,
Moreover, the dimensionless central probe deformation
scales as W ~ v*4=") and, specifically for our material
system, W ~ 91 Therefore, as v increases, the pressure
within the film (p* ~v%?®) increases faster than the
deformation of the probe (W ~ v%!"). The faster increase
in pressure within the film as » increases would necessitate
larger probe deformations to stabilize the interface; thus a
higher elasticity parameter is needed for stabilization.

We study the relationship between elastohydrodynamic
deformation and adhesive film pressure by modeling
debonding between a soft probe and a rigid surface
submerged in a Newtonian fluid (see Supplemental
Material [31]). In the model, the fluid viscosity is compa-
rable to the complex viscosity of the adhesive. This model
is a highly simplified version of our experiments, in that the
adhesive is treated as a viscous fluid without an air-
adhesive interface present. We extract the pressure profile
during detachment for both rigid and soft probes and obtain
lower fluid pressure with the soft probe, Fig. 5, which
would have a stabilizing effect. We also observe that the
elastohydrodynamic probe deformation leads to a non-
monotonous pressure drop within the fluid. In contrast, the
pressure distribution is monotonic during the detachment
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FIG. 5. Dimensionless pressure (p* = nvR/b?) vs dimension-

less radial position (Ry = v/2Rb) obtained from modeling the
detachment of soft (Eppe = 0.32 MPa) and stiff (Eprope =
3 MPa) PDMS probes of R=6mm at 50 pm/s and
n = 1000 Pas, b = 20 pm. Retraction of the soft probe leads
to lower fluid pressure and appearance of stagnation point
delineating drainage and infusion regions.

from a rigid probe. Moreover, deformation of the soft probe
leads to a negative pressure gradient at the center point,
causing the fluid drainage from the center during detach-
ment, while further away from the center, the pressure drop
is positive, leading to the expected fluid infusion. Between
the drainage and infusion regions, there is a stagnation
point where the pressure gradient is zero. The stagnation
point moves toward the center of the probe during
retraction (Fig. 5). Because of incompressibility, the sur-
faces initially move closer at the center point during
detachment. The combination of lower pressure and a
stagnation point could suppress the Saffman-Taylor insta-
bilities during the detachment from a soft probe; this will be
the subject of future studies.

In summary, the detachment of a viscoelastic adhesive
from soft surfaces suppresses the onset of Saffman-Taylor
instabilities. While elasticity has been shown previously to
impact Saffman-Taylor instabilities, we show here the
connection with adhesion. Controlling the mode of failure
during debonding between soft materials could impact
adhesion (and pain) with skin. We attribute stabilization of
the interface to elastohydrodynamic deformation of the
probe caused by viscoelasticity. The elasticity parameter
can serve as a guide for interfacial stability. A simple model
shows that replacing a rigid probe with a soft one leads to a
decrease in the pressure drop and the appearance of a
stagnation point within the film, and both could lead to
interface stabilization. Further studies are necessary to

better understand the detachment process between two
soft materials and the stabilization of the interface.
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