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We present a general approach to excite robust dissipative three-dimensional and high-order solitons and
breathers in passively driven nonlinear cavities. Our findings are illustrated in the paradigmatic example
provided by an optical Kerr cavity with diffraction and anomalous dispersion, with the addition of an
attractive three-dimensional parabolic potential. The potential breaks the translational symmetry along all
directions, and impacts the system in a qualitatively unexpected manner: three-dimensional solitons, or
light bullets, are the only existing and stable states for a given set of parameters. This property is extremely
rare, if not unknown, in passive nonlinear systems. As a result, the excitation of the cavity with any input
field leads to the deterministic formation of a target soliton or breather, with a spatiotemporal profile that
unambiguously corresponds to the given cavity and pumping conditions. In addition, the tuning of the
potential width along the temporal direction results in the existence of a plethora of stable asymmetric
solitons. Our results may provide a solid route toward the observation of dissipative light bullets and three-
dimensional breathers.
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Solitons are self-sustained localized packets of light or
matter waves, capable of propagating unchanged in non-
linear media, owing to the interplay between diffraction or
dispersion and nonlinear processes. These particlelike
objects have been extensively studied in different areas
of physics, such as Bose-Einstein condensates, plasmas,
hadron matter, gravitation, and optics [1–4]. To date, most
experiments on solitons have been carried out in one-
dimensional (1D) and two-dimensional (2D) settings [3].
Whereas stable, steadily propagating 3D solitons (in optics
they are usually called light bullets [5]), theoretically
predicted over the realm of nonlinear science, and in
different optical settings, remain yet elusive. This long-
standing challenge is caused by high-order perturbations,
which eventually cause the decay of 3D solitons, or by
wave collapse, which is typical for materials exhibiting the
ubiquitous cubic nonlinearity [3,6,7]. Remarkably, obser-
vations of transient 3D solitons have been reported in the
context of optics [8–10]: however, these states eventually
decay, because of the above-mentioned effects. Various
strategies to delay or arrest 3D soliton decay have been
proposed, including dynamical regularisation of collapse
[11], use of saturable, nonlocal, and competing nonlinear-
ities [12–17], rapid longitudinal variations of material
parameters [18], use of optical lattices [19–23], both static
and twisted ones [24], and other methods of wave confine-
ment [25,26].

Among all physical systems, driven dissipative cavities
offer the unique possibility to integrate higher-order (other-
wise detrimental) effects, such as higher-order dispersion and
Raman scattering, into the soliton states, since these can be
locked by the interplay between parametric losses and the
driving source, thus preventing instabilities from their
development [27–29]. On the other hand, standard dissipative
systems, like those described by the cubic-quintic Ginzburg-
Landau equation or by passive-driven nonlinear equations,
presentmultiple coexisting attractors, and inparticular the one
corresponding to a homogeneous flat (or basal) state [30,31].
In the presence of the homogeneous state, the excitation of
one of the solitonic attractors is a nontrivial task, and it highly
depends on the way the system is perturbed (see, e.g.,
discussion in Ref. [32]). Below, we refer to these localized
solitonic attractors as dissipative solitons.
In this Letter, we unveil a rare paradigm for 3D

dissipative soliton excitation, where the soliton itself is
the only possible attractor of the system, even when it
represents an excited, higher-order state [33]. This can be
achieved by breaking the translational symmetries of the
dissipative system—a coherently driven Kerr resonator—
by the introduction of a 3D parabolic confining potential.
In the presence of the external uniform pump, this results
in the emergence of different types of spatiotemporal
dissipative solitons (STDS), which represent nonlinear
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deformations of the various eigenmodes of the potential,
including “excited” ones, containing several nodes in their
wave function. Among them, we predict the formation of
high-order stable states, containing considerable contribu-
tions from several modes as determined by pump detuning
from the cavity resonance. These states can be stable over a
broad range of pump frequencies. The existence of such
higher-order states in stable form is a remarkable and
unexpected fact, since it is well known that higher-order 3D
solitons with complex spatiotemporal structures, such as
vortex bullets [34–37], and especially states with nodes,
are fragile objects in both conservative and dissipative
systems [38–41]. As such, their stabilization usually
requires the presence of competing/nonlocal nonlinearities
or dissipation mechanisms. We characterize the rich bifur-
cation structure of STDS, as well as their stability, in
different regimes of operation. We also show that the
nonlinear cavity system supports robust breather solutions,
which emerge from Hopf bifurcations in the course of
development of the oscillatory instabilities of the STDS.
From the application side, our approach may lead to the
generation of robust optical frequency combs [42,43] based
on 3D dissipative solitons in multimode nonlinear cavities,
generalizing recent results [44,45].
The master equation describing the time evolution of

light in driven, passive, diffractive, and dispersive Kerr
cavities with a 3D potential read as

∂tA¼ i∇2A− iðx2 þ y2 þCτ2ÞAþ ijAj2A− ð1þ iδÞAþP;

ð1Þ

where Aðx; y; τ; tÞ is the slowly varying field amplitude, τ is
a “fast time” of the field evolution within each round-trip, t
is a “slow time” that corresponds to the normalized round-
trip time of the cavity [46], ∇2 ¼ ∇2⊥ þ ∂

2
τ , ∇2⊥ ¼ ∂

2
x þ ∂

2
y

accounts for diffraction, ∂
2
τ stands for group velocity

dispersion, δ is the detuning between the driving laser
and the closest cavity resonance, the loss is normalized to 1,
P is the pump amplitude, and x2 þ y2 þ Cτ2 describes the
parabolic potential, where C controls temporal confine-
ment. The model derivation and normalization can be
seen in the Supplemental Material [47], which includes
Refs. [48,49]. The transverse potential ∼ðx2 þ y2Þ is
associated with a parabolic graded-index profile, while
the temporal part ∼Cτ2 [50], crucial for our findings, can be
introduced by intracavity synchronous phase modulation
[48,51–54]. Parabolic potentials have been previously
considered in conservative systems for studying, e.g.,
vortex solitons in Bose-Einstein condensates [55,56],
and in dissipative systems for studying mode-locked nano-
lasers [57,58], multimode fiber lasers [59], and the stabi-
lization of 1D solitons [60].

In the context of driven resonators, Eq. (1) is a
spatiotemporal generalization of the well-known spatial
Lugiato-Lefever equation [61], or the temporal
Haelterman-Trillo-Wabnitz equation [62], with a 3D poten-
tial. This equation is one of the simplest models describing
the evolution of a complex field in the presence of
dissipation and driving, and it has been used within
different physical systems, e.g., in condensed matter and
plasma physics [63,64]. Below, we thoroughly analyze the
stationary solutions of Eq. (1) and their stability [65].
Equation (1) with C ¼ 1 supports a variety of spherically

symmetric STDS: examples are illustrated in Figs. 1(a)–
1(d) for P ¼ 0.75: by varying δ one obtains STDS with
different number of radial nodes, resulting in different
intensity rings, as shown in Figs. 1(a)–1(d). Our striking
finding is that any of these stable states can be determin-
istically excited from an arbitrary input condition, because
they represent the unique stable attractor of the system
for a given δ. This fact is illustrated by Fig. 1(e), which
shows the evolution of the total intracavity energy,
EðtÞ≡∭ jAðx; y; τ; tÞj2dxdydτ, starting from the weak

(a).1

(a).2

(b).1

(b).2 (c).2

(c).1

(d).2

(e)

(d).1

t = 0.07

t = 0.43 t = 0.65 t = 10

t = 0.15

FIG. 1. (a)–(d) STDS solutions with P ¼ 0.75, C ¼ 1 and
δ ¼ −1;−4 − 8;−11.5. Top: 3D representations; bottom: wave-
functions cross sections, jAðx; y ¼ 0; τÞj2 at y ¼ 0. (e) Temporal
evolution of the field energy, associated with the dynamical
generation of the light bullet in (c), when exciting the cavity with
a weak CW state (see text). All 3D plots in this figure consist of
constant intensity surfaces at the values 3 (red), 0.1 (blue),
and 0.01 (green). Blue surfaces mark the approximate locations
of the bullet’s nodes, illustrating their higher-order features,
as in (c)–(d).
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continuous-wave (CW) input seed Aðx; y; τ; 0Þ ¼
0.1 exp ð−ðx2 þ y2Þ=w2Þ with w2 ¼ 2= ln 2 (exactly the
same final state is reached with any other arbitrary input).
The initial stages of the field evolution feature a spatio-
temporal confinement (see insets for t ¼ 0.07 and t ¼ 0.15,
and Visualization I [67]), followed by an energy growth,
which, despite the strong initial asymmetry (cf. inset at
t ¼ 0.43), eventually converges, for t≳ 10, to the stable
STDS presented in Fig. 1(c). This state remains stable for
extremely long propagation simulations (t > 1000), in
agreement with the predictions of the linear stability
analysis (see below).
Physical insight into the Kerr cavity system is presented

below, by analyzing the nonlinear solutions of Eq. (1),
alongside with their stability. Figure 2(a) shows the
bifurcation structure associated with the spherically sym-
metric (C ¼ 1) STDS for P ¼ 0.75, where the light bullet’s
peak intensity is plotted as a function of detuning (red and
black curves). Bullets display a multi-resonant behavior for
δ < 0, which is inherited from the linear system, as
revealed by the solutions of Eq. (1) with the nonlinear
term omitted, shown by the gray curves. Linear resonances
(local maxima whose positions are marked with dashed
vertical lines), occur at values of cavity detuning that
correspond to the eigenvalues, δn (n ¼ 1; 2; 3…), associ-
ated to the spatiotemporal modes of the potential, ψn,
which obey

δnψn ¼ ½∇2 − ðx2 þ y2 þ Cτ2Þ�ψn: ð2Þ

The first five modes are shown in Fig. 1(c), together with
their eigenvalues (right axis): as can be seen, ψn presents
n − 1 radial nodes (below we use the normalization
∭ jψnðx; y; τÞj2dxdydτ ¼ 1). Hence, solutions with a dif-
ferent number of nodes (different n) are associated with the
presence of multiple resonances. It is also apparent in
Fig. 2(a) that consecutive linear resonances, stemming from
decreasing values of δ, have a progressively larger ampli-
tude. We may relate their amplitudes to a modal excitation
efficiency under the driving P, which can be evaluated from
the integral Mn ¼ ∭Pψnðx; y; τÞdxdydτ. The normalized
value Mnor;n ¼ Mn=M1 is plotted in Fig. 2(d) for the first
five modes, i.e., from ψ1 to ψ5. The predicted increase of
Mnor;n with n qualitatively explains the behavior of both
linear and nonlinear resonances (which are associated with
the amplitude of the 3D solitons) in Fig. 2(a), exhibiting
higher intensities as the cavity detuning decreases. The
bifurcation diagram does not show a significant discrep-
ancy when replacing the parabolic potential ∼Cτ2 with a
cosine potential (see Supplemental Material [47]).
Importantly, the 3D solitons found here have a rich

multimodal nature, which can be unveiled by expanding the
nonlinear solutions on the basis of the 3D linear modes ψn:
ASTDS ¼

P
n≥1 Cnψn, where the expansion coefficients are

Cn ¼ ∭Aðx; y; τÞ · ψnðx; y; τÞdxdydτ. Figure 2(b) depicts

the energy decomposition of the STDS from Fig. 2(a) into
the basis of linear modes, by showing the normalized
modal energies En ¼ jCnj2=

P jCnj2 as a function of δ. For
example, the bullet shown in Fig. 1(c) (δ ¼ −8) forms, as
shown in Fig. 2(b), owing to the strong hybrid contribution
of the high-order modes ψ2;3 (∼80%), plus other modes
(∼20%). The bullet is stable, and its stability persists
when δ is decreased, until entering into a region where
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FIG. 2. (a) Bifurcation diagram showing the central peak
intensity, jAðx ¼ 0; y ¼ 0; τ ¼ 0Þj2 vs detuning for P ¼ 0.75
and C ¼ 1. Solid black (dashed red) lines, obtained by numerical
continuation, represent stable (unstable) STDS. Blue circles
superimposed on solid lines are obtained by propagation simu-
lations. The gray dashed curve corresponds to the linear states of
the cavity; vertical dashed lines at δ1 ¼ −3, δ2 ¼ −7, δ3 ¼ −11
mark the position of the resonances [as predicted from Eq. (2)].
Points Hm mark the Hopf bifurcation thresholds, red areas mark
the collapse regions, and the sparse blue circles mark the
breathers minimum or maximum amplitudes. (b) Normalized
modal energies of light bullets in (a), obtained by decomposition
into the basis formed by the linear modes, ψn, of the potential.
(c) The first five modes ψn and their eigenvalues, δn. (d) Mode
excitation efficiency vs detuning. (e) Bifurcation diagram analo-
gous to (a) for P ¼ 0.64.
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spatiotemporal collapse occurs, i.e., in-between points H4

and H5 in Fig. 2(a). For even lower values of the detuning,
δ < δH5

, higher-order stable STDS such as that shown in
Fig. 1(d) arise, due to the locking of even higher dominant
modes ψ3;4: this is confirmed by the mode decomposition
plot in Fig. 2(b). Multimodal richness increases when
decreasing δ, consistent with the fact that additional linear
modes may be excited. Remarkably, even though the
bullets’morphological complexity increases when decreas-
ing δ, wide stability domains persist in the valleys between
consecutive resonances. Such stability domains broaden
whenever the driving amplitude is reduced, as shown in
Fig. 2(e): this case is similar to Fig. 2(a), but with P ¼ 0.64.
Here, the STDS remain stable for almost all values of δ.
The most exciting property of the STDS bifurcation

diagrams [Figs. 2(a) and 2(e)] is that light bullets do not
coexist with any trivial states, such as stable homogeneous
or quasi-homogeneous solutions, which are commonly
emerging as basal states in dissipative systems. In our
cavity, homogeneous states cannot exist because of the
removal of the translation symmetry, which is achieved by
the three-dimensional potential. As a result, bullets are
excited from any initial input conditions [cf. Fig. 1(e)],
constituting a rare paradigm for dissipative soliton for-
mation. This is the central result of this Letter.
While STDS between resonances tend to be stable,

Fig. 2(a) shows that their stability may be lost for branches
with high peak intensities. The stability thresholds corre-
spond to the saddle-node bifurcation points, marked as SNm
(m ¼ 1; 2; 3;…), or to points Hm, where the solutions of
Eq. (1) undergo supercritical Hopf bifurcations [e.g., H1 at
δ ≈ −1.67 and H5 at δ ≈ −11 in Fig. 2(a)]: correspondingly,
the STDS are subject to an oscillatory instability. Within the
unstable regions, bullets may eventually collapse (red areas)
or form stable 3D breathers, whose regular intensity oscil-
lation ranges are indicated by the blue region in Fig. 2(a).
Figure 3 shows the stable breather that is formed for

fδ; P; Cg ¼ f−2; 0.75; 1g. This stable dissipative state
features 700 regular and perfectly periodic intensity oscil-
lations and it is exactly periodic over the t ¼ 2000 long
simulation shown in Fig. 3(a), for the last 300 time units.
The close-up views of such evolution in Figs. 3(b) and 3(c)
illustrate the periodic modifications of the breather’s
3D profile and cross section, respectively. Stable
breathers correspond to multidimensional limit cycles,
whose projection in the subspace fAreðx ¼ 0; y ¼ 0;
τ ¼ 0; tÞ; Ainðx ¼ 0; y ¼ 0; τ ¼ 0; tÞg is illustrated in
Fig. 3(d) for a simulation extending up to t ¼ 2000. The
Fourier transform of Ið0;0;0ÞðtÞ [see Fig. 3(e)] yields an
equispaced comb of oscillation frequencies, with spacing
Δω ≈ ω=2π ≈ 0.3525, leading to a breather period
T ¼ Δω−1 ≈ 2.83. Importantly, such breathers can also
be deterministically excited by any arbitrary input field,
illustrating once again the unique properties of this
system for generating stable multi-dimensional states.

The amplitude of breather oscillations increases when
one tunes δ away from the Hopf bifurcation, where the
breather has emerged [cf. Figs. 2(a) and 2(e)], until the
breather starts collapsing (red areas in Fig. 2). This
instability disappears when δ is tuned across the next
Hopf bifurcation, e.g., H2 at δH2

≈ −2.6 in Fig. 2(a).
So far, we focused on bullets appearing when the 3D

potential is radially symmetric (C ¼ 1). The possibility of
controlling the strength of the temporal confinement offers
a powerful degree of freedom to generate a plethora of
STDS with different shapes other than the spherically
symmetric ones. Figure 4 shows the asymmetric bullets
that are generated for δ ¼ −8 and P ¼ 0.75 at C ¼ 0.5 and
C ¼ 5 [see insets in Fig. 4(a) and intensity cross sections
at y ¼ 0 in Figs. 4(b)–4(d)], together with the variation of

(d) (e)

(b)

(a)

(c)

FIG. 3. Time evolution of the breather with P ¼ 0.75, δ ¼ −2,
C ¼ 1. (a) Peak intensity vs time, shown only for the last ∼106
breathing periods obtained from a t ¼ 2000 long propagation
simulation. (b) Zoom of (a) over the last few periods with
instantaneous profiles shown by iso-surfaces at the levels I ¼ 3
(red) and I ¼ 0.1 (blue). (c) Time evolution of a cross section
Iðx; y; τ ¼ 0; tÞ. (d) Closed orbits formed by the central real and
imaginary parts of the complex field over 700 breathing periods
visualization II [68]. (d) Fourier transform of the oscillations in
(a), forming a comb of temporal frequencies.
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the STDS energy E as a function of C [Fig. 4(a)]. The bullet
energy diverges at C ¼ 0, when it transforms into a
uniform-in-τ CW state [left inset in Figs. 4(a) and 4(b)],
which nevertheless preserves its complex multimodal
spatial structure, with several intensity oscillations. The
increase of C leads to a growing degree of temporal
confinement, and changes the morphology of the STDS
along the τ-direction (see visualization III [69]). The bullet
energy E typically decreases with C [Fig. 4(a)]. At
intermediate values of C ∼ 0.5, one obtains STDS with
multiple maxima in the temporal dimension [Fig. 4(c)].
Further increases of C result in strong temporal confine-
ment for the STDS [right inset in Figs. 4(a) and 4(d)], while
the bullet energy reaches an almost constant value around
E ≈ 17. Note that the asymmetric STDS presented in Fig. 4
are stable for all considered values of C.
In conclusion, we have introduced a novel paradigm for

the deterministic excitation of robust STDS in passive
driven Kerr cavities with a 3D parabolic potential. The
latter breaks the translational symmetries, and as a result,
the STDS become the unique attractors of the system.
Furthermore, stable high-order solitons and breathers,
which are generally unstable, also exist. We have charac-
terized their bifurcation structure and stability, locating the
thresholds between stationary and breathing STDS. Our
general findings may stimulate further research on 3D
solitons across several disciplines, including Bose-Einstein
condensates, plasmas, and optics. In the latter, our Letter
may pave the way for the long-sought experimental
demonstration of truly stationary, long-living light bullets.
In the context of soliton microcombs, the fact that STDS
exist for negative (blue shifted) detuning should greatly
facilitate their thermal locking [70]. The generation of

STDS in passive multimode optical cavities, although
challenging, appears to be experimentally feasible, when
considering recent related demonstrations [71,72]. In par-
ticular, using a graded-index multimode fiber-based cavity
provides the spatial component of the parabolic potential
in (1), whereas the temporal component of the quadratic
potential is obtained by synchronous intracavity phase
modulation [48,51–54].
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