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Recent density functional theory and simulation studies of wetting and drying transitions in systems with
long-ranged, dispersionlike forces, away from the near vicinity of the bulk critical temperature Tc, have
questioned the generality of the global surface phase diagrams for wetting, due to Nakanishi and Fisher,
pertinent to systems with short-ranged forces. We extend these studies deriving fully analytic results which
determine the surface phase diagrams over thewhole temperature range up to Tc. The phase boundaries, order
of, and asymmetry between the lines ofwetting and drying transitions are determined exactly showing that they
always converge to an ordinary surface critical point. We highlight the importance of lines of maximally
multicritical wetting and drying transitions, for which we determine the exact critical singularities.
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Wetting phenomena play a crucial role in surface physics,
chemistry, and biology and are of widespread technological
importance. A fundamental question is whether or not a
solid-fluid interface undergoes a wetting transition, i.e., if
the contact angle decreases to zero (complete wetting) or
increases to π (complete drying) at a wetting/drying temper-
ature Tw [1–9]. For systems with purely short-ranged (SR)
forces the allowed surface phase diagrams were first
elucidated by Nakanishi and Fisher (NF) [10], who showed
how the lines of wetting and drying transitions connect with
surface phase transitions occurring at the bulk critical
temperature Tc (see Fig. 1). For systems with long-ranged
(LR) forces, however, the situation is not so clear and
persuasive scaling arguments have been presented sug-
gesting that nonwetting gaps in the phase diagram may
persist up to Tc [11]. Indeed recently, Evans, Stewart, and
Wilding (ESW) [12] argued from numerical density func-
tional theory (DFT) and simulation studies that when LR
forces are present, the surface phase diagrams are radically
different to those for SR forces, and indeed show conspicu-
ous nonwetting gaps. In this Letter, we present analytical
results for the DFTmodel used by ESWand show that when
both wall-fluid and fluid-fluid forces are LR, nonwetting
gaps do not occur and that the lines of wetting and drying
transitions always terminate at a unique ordinary surface
phase transition at Tc, in keeping with the scaling theory
of NF.
Consider a simple fluid, at temperature T, and chemical

potential μ, in contact with a wall situated in the z ¼ 0
plane, exerting a potential VðzÞ on the fluid particles. We
suppose that bulk liquid and gas phases, with number

densities ρl and ρg, coexist along the saturation line μsatðTÞ
up to a critical temperature Tc. Bulk exponents are
identified for Δρ ¼ ρl − ρg ≈ ðTc − TÞβ and the correlation
lengths ξg; ξl ≈ ðTc − TÞ−ν. We seek to determine the
contact angle θ, defined, at coexistence, via Young’s
equation, γwg ¼ γwl þ γlg cos θ, involving the wall-gas,
wall-liquid, and liquid-gas tensions, and, in particular,
the regions of complete wetting (θ ¼ 0) and complete
drying (θ ¼ π) in the phase diagram for given T and VðzÞ.
The phase diagram shows lines of wetting transitions,
pertinent to the wall-gas interface [μ ¼ μ−satðTÞ] where
the equilibrium thickness leq of the wetting layer of
liquid diverges. Similarly, drying transitions occur for

FIG. 1. NF surface phase diagrams showing lines of critical
wetting and drying (dashed red), first-order wetting and drying
(solid red), and tricritical wetting and drying [10]. The surface
field h1 and enhancement g couple to the surface magnetization
and order parameter. C∞

ord and Sp are surface phase transitions
distinguishing critical desorption ðTc; h1 < 0Þ and critical ad-
sorption ðTc; h1 > 0Þ with three and four relevant scaling fields,
respectively. For g > 0 additional surface phase transitions also
occur above Tc.
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the wall-liquid interface [μ ¼ μþsatðTÞ] where the thickness
leq of a drying layer of gas diverges. This divergence is
continuous for critical wetting and drying and discontinu-
ous for first-order wetting and drying. We determine this
using a DFT model by minimizing a grand potential
functional

Ω½ρ� ¼ F½ρ� þ
Z

dz½VðzÞ − μ�ρðzÞ; ð1Þ

where ρðzÞ is the density profile and F½ρ� is the Helmholtz
functional modeling the fluid-fluid interaction [13].
Following standard procedure we split F½ρ� into repulsive,
hard-sphere (hs), and attractive contributions where for the
latter we use a reliable mean-field approximation

F½ρ� ¼ Fhs½ρ� þ
1

2

Z Z
dzdz0ρðzÞϕðjz − z0jÞρðz0Þ: ð2Þ

Here, ϕðzÞ is the attractive part of the fluid-fluid potential
integrated along the plane. We use both nonlocal
(Rosenfeld-like [14]) and local approximations for Fhs½ρ�,
where for the latter we write Fhs½ρ� ¼

R
dzfhsðρðzÞÞ where

fhsðρÞ is the bulk hs free-energy density.
Next, we recall the findings of ESW. For SR forces ESW

find lines of critical wetting and critical drying in the
ðT; ϵSRÞ plane (with ϵSR the strength of the wall-fluid
potential) that meet tangentially at Tc. The drying transition
is critical at all temperatures while below a tricritical point
the wetting transition is first order. This phase diagram is
very close to that of NF (for the case of g < 0) and the only
difference with Landau theory is the absence of Ising
symmetry for wetting and drying, although this is restored
near Tc; see Fig. 2(a). We add here that the lines of critical
wetting and drying meet at an ordinary surface phase
transition (C∞

ord) at ϵ
c
SR marking the change from critical

desorption for ϵSR < ϵcSR where ρðzÞ − ρð∞Þ ∼ −z−β=ν to
critical adsorption, ρðzÞ − ρð∞Þ ∼ z−β=ν, for ϵSR > ϵcSR
which is characterized by a surface gap exponent Δ1

[15,16]. Within NF scaling theory the lines of critical
wetting (and drying) follow the scaling law Tc − Tw ∝
h1=Δ1

1 where for fluids h1 ∝ ϵSR − ϵcSR. At mean-field level
Δ1 ¼ 1=2, very close to the expected value Δ1 ≈ 0.47 [17],

so that the lines of critical wetting and drying approachC∞
ord

parabolically.
However, ESW report different phase diagrams for

systems with LR forces. When the external potential decays
as VðzÞ ≈ −ϵ3=z3 and the fluid-fluid interaction is SR, the
wetting transition is first order, with numerical results
suggesting the line of wetting transitions meets Tc, tangen-
tially, at a finite value of ϵ3 [see Fig. 2(b)]. These
observations are consistent with an earlier study by
Ebner and Saam on the effect of long-ranged wall-fluid
forces for Ising systems [18]; see, in particular, their Fig. 4.
ESW also show that ϵ3 ¼ 0 is a line of critical drying
transitions and that the thickness leq of an adsorbed layer of
gas diverges continuously as ϵ3 → 0 for all T < Tc. ESW
determine the binding potential WðlÞ (the excess surface
free-energy for a given drying film thickness, l) whose
minimum yields leq=ξg ≈ j ln ϵ3j þ 3 ln j ln ϵ3j which accu-
rately describes their numerical results. A similar phase
diagram is reported for LR wall-fluid and fluid-fluid forces;
however, the line of critical drying transitions extends away
from ϵ3 ¼ 0 [see Fig. 2(c)]. A nonwetting gap persists up to
Tc which is strikingly different from the NF phase diagram.
ESW do not comment on the nature of the endpoints of the
wetting and drying transition lines, which we show is key to
understanding the phase diagram.
Consider first systems when only the wall-fluid forces

are LR where our analysis supports the ESW results and
earlier scaling predictions [11] of nonwetting gaps. We
emphasize the following:
First, for potentials decaying as VðzÞ ≈ −ϵp=zp (with

p ≥ 3), the line of first-order wetting transitions ends,
tangentially, at ðTc; ϵcpÞ, at an ordinary surface phase
transition C∞

ord which, again, separates regimes of critical
desorption and adsorption. At C∞

ord, the profile exhibits a
weaker algebraic decay, ρðzÞ − ρð∞Þ ∼ −ϵcpz−xordðpÞ where
we have determined that xordðpÞ ¼ ðp − 2Þ=ð1 − ην=βÞ
where η is the bulk exponent for the anomalous decay of
the correlation function [19]. The line of critical drying
transitions, occurring at ϵ3 ¼ 0, does not end at an ordinary
surface phase transition but instead simply meets the line of
critical desorption (T ¼ Tc, ϵ3 < ϵc3). All lines of constant

FIG. 2. ESW surface phase diagrams for (a) SR forces, (b) SR fluid-fluid and LR wall-fluid forces, (c) LR wall-fluid and fluid-fluid
forces showing lines of critical wetting and drying and first-order wetting [12]. We have added the locations of C∞

ord occurring at ϵ
c
SR and

ϵc3. The unknown end points of the lines of critical drying and first-order wetting which give rise to the apparent wetting or drying gap at
Tc are shown as question marks.
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contact angle, π > θ > 0, converge to C∞
ord as T → Tc,

similar to NF.
Second, the ESW phase diagram [Fig. 2(b)] is the limit

of the SR phase diagram [Fig. 2(a)] as the range of the wall-
fluid interaction diverges. Suppose that the decay VðzÞ ≈
−ϵ3=z3 is truncated at z ¼ R. The phase diagram resorts to
that for SR forces, showing a line of critical drying
transitions at ϵd3ðT;RÞ > 0 and a tricritical wetting point
at T triðRÞ. As R increases, we find that ϵd3ðT;RÞ ∝ R3e−R=ξg

and T triðRÞ → Tc recovering the ESW phase diagram
[Fig. 2(b)]. Since, for all finite R, the line of first-order
wetting meets the line of critical wetting tangentially, at T tri,
and that also the line of critical wetting meets Tc tangen-
tially, it follows that in the limit of R → ∞ the line of first-
order wetting in the ESW phase diagram must also meet Tc
tangentially. Numerical results from a nonlocal DFT
indicate that Tc − T triðRÞ ∝ R−1 (see Fig. 3). Note that
the shift of the drying line, from ϵ3 ¼ 0, is equivalent to
setting leq ≈ R, using the ESW result for leq, reminiscent

of the finite-size scaling for interface delocalization in slit
geometries [20].
Third, the ESW phase diagram is also related to the NF

phase diagram with g ¼ 0. To see this, we write VðzÞ ¼
VLRðzÞ þ VSRðzÞ with VLRðzÞ ≈ −ϵ3=z3 and a SR contri-
bution of strength ϵSR as considered earlier. Allowing for a
SR attraction generalizes the ESW phase diagram which is
recovered by setting ϵSR ¼ 0 [Fig. 2(b)] leading to three
possibilities; see Fig. 4. For ϵSR < ϵcSR, a line of first-order
drying transitions exists for ϵ3 < 0 and terminates at a
short-ranged critical drying transition at temperature Td
when ϵ3 ¼ 0. A line of LR critical drying transitions,
similar to that studied by ESW, occurs for Tc > T > Td. As
ϵSR is increased to ϵcSR, so Td → Tc and ϵc3 (corresponding
to C∞

ord) decreases as ϵ
c
3 ∝ ϵcSR − ϵSR. When ϵSR ¼ ϵcSR the

lines of first-order wetting (for ϵ3 > 0) and first-order
drying (for ϵ3 < 0) meet at a multicritical surface special
transition Sp, as for the NF phase diagram with g ¼ 0 [10].
This, we note, is also consistent with the findings of
Ebner and Saam [18] (see their Fig. 5). For ϵSR > ϵcSR
the locations of the first-order wetting and drying are
reversed and, instead a SR wetting transition (which may be
critical or first order) occurs at a temperature Tw for ϵ3 ¼ 0.
Finally, we turn to LR wall-fluid and fluid-fluid forces

where we show that there is not a nonwetting gap and that
the ESW phase diagram Fig. 2(c) is incorrect near Tc. We
begin by defining the coefficients describing the decay of
the forces. Following Dietrich and Napiórkowski (DN) [21]
we suppose that the external and fluid-fluid potentials have
asymptotic expansions,

VðzÞ ¼ −
ϵ3
z3

−
ϵ4
z4

þ � � � ð3Þ

and

Z
∞

z
ϕðz0Þdz0 ¼ −

ϕ3

z3
−
ϕ4

z4
þ � � � ; ð4Þ

respectively. We also write α ¼ −
R∞
−∞ ϕðzÞdz. The leading-

order terms in the binding potential WðlÞ are WðlÞ ¼
a2=l2 þ a3=l3 þ � � �, where the coefficient a2 ¼ Δρðϵ3 −
ρlϕ3Þ=2 for the wetting branch and a2 ¼ Δρðρgϕ3 − ϵ3Þ=2

FIG. 4. Generalized ESW surface phase diagrams with external potential VðzÞ ¼ VLRðzÞ þ VSRðzÞ and SR fluid-fluid forces showing
the connection between the ESW phase diagram Fig. 2(b) and the NF phase diagram with g ¼ 0 [Fig. 1(b)].
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FIG. 3. Nonlocal DFT results for the surface phase diagram
with a truncated LR wall-fluid potential of range R (in units of the
molecular diameter) with T and ϵ3 measured in units of the fluid-
fluid potential. Inset, scaling of the tricritical wetting temperature
(bold dots) showing that Tc − T tri ∝ R−1.
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for the drying branch. As noted by ESWand DN this is the
exact value of a2 in all mean-field DFTs (2) of wetting/
drying whether local or nonlocal. Using this we can see
immediately why the nonwetting gap in the ESW phase
diagram Fig. 2(c) is in fact contradictory. ESW observed
correctly that along the critical drying branch a2 ¼ 0 and
a3 > 0 implying that the line of critical drying terminates at
the unique point ϵc3 ¼ ρcϕ3. They also note that if the
wetting branch is first order, then the transition occurs at
a2 > 0 with a3 < 0. However, a2 ¼ 0 still determines the
line of spinodals where the activation barrier in WðlÞ first
appears. On approaching Tc the lines of wetting and its
spinodals converge to a2 ¼ 0 and hence meet at the same
point ϵc3 ¼ ρcϕ3 as the terminus of the line of critical
drying. The known, exact value of a2 means that a non-
wetting gap cannot occur.
We next show that within local DFTs the common

terminus of the lines of wetting and drying is always an
ordinary surface critical point as per NF scaling theory. DN
determine the locations of critical wetting (ϵw3 ¼ ρlϕ3) and
critical drying (ϵd3 ¼ ρgϕ3) and note that near critical
wetting the amplitude Qwl

3 ∝ ϵ3 − ρlϕ3 of the decay of
the profile, ρðzÞ − ρl ≈Qwl

3 =z3 þ � � �, at the wall-liquid
interface, vanishes—and similarly for Qwg

3 . Building on
this, we initially narrow our focus and consider including
potentials satisfying VðzÞ ¼ c

R
∞
z ϕðz0Þdz0, which include

the Sullivan model with exponentially decaying inter-
actions [22]. For LR forces it implies that ϵn ¼ cϕn and
also that SR contributions are matched. These models share
the property that when c ¼ ρl the density profile for the
wall-liquid interface is flat i.e., ρðzÞ ¼ ρl (and for the wall-
gas interface when c ¼ ρg). To determine the nature of the
wetting and drying transitions we construct the binding
potential WðlÞ. This is usually done within the “sharp-
kink” approximation, in which the wetting layer is con-
sidered a structureless slab [6]. However, when ϵ3 ¼ ρlϕ3

all sharp-kink contributions vanish as do “soft-kink” terms
of order 1=l3 or 1=l4 due to the vanishing of the local
adsorption at the wall. What is left in WðlÞ is a repulsive
term decaying as ϵ3ϕ3 lnl=l5, from the combination of the

ϵ3=z3 tail in VðzÞ and the ϕ3=ðl − zÞ3 tails in the liquid-gas
density profile [23]. This contribution cannot be eliminated
by varying the coefficients ϵn and describes a maximally
multicritical (MMC) continuous wetting/drying transition.
This repulsive term was mentioned in the important study
by DN but its impact on the surface phase diagrams was not
investigated.
We now construct the allowed phase diagrams beginning

with the simplest case where only ϵ3, ϕ3 are present. The
phase diagram [see Fig. 5(a)] shows lines of MMC wetting
along ϵw3 ¼ ρlϕ3, and MMC drying along ϵd3 ¼ ρgϕ3

converging, parabolically, to C∞
ord, consistent with the

NF scaling theory with Δ1 ¼ 1=2. Near the MMC wetting
transition, the binding potential is

WðlÞ ¼ a2
l2

þ a5
lnl
l5

þ � � � ; ð5Þ

where a5 ¼ 12Δρϵ3ϕ3χl and χb¼∂ρb=∂μ¼1=½f00hsðρbÞ−α�
is the bulk compressibility which we have assumed is the
same for the liquid and gas phases. A similar result holds
for MMC drying. Minimizing WðlÞ determines that, on
approaching a temperature Tw on the MMC wetting
boundary, the film thickness and parallel correlation length
ξk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γlg=W00ðleqÞ

p
diverge as

leq ≈
�j ln tj

t

�
1=3

; ξk ∝
j ln tj23
t
7
6

; ð6Þ

where t ¼ ðTw − TÞ=Tw. We note that the phase diagram
and critical exponents are the same for all MMC wetting
(and drying) transitions, when higher coefficients are
included.
Let us now see how this MMC phase diagram is altered

when we introduce further coefficients in the wall-fluid and
fluid-fluid potentials. These generate terms decaying as
a3=l3 and a4=l4 in WðlÞ, which were determined by DN.
For the wetting branch the value of a3 when a2 ¼ 0 is
a3 ¼ Δρðϵ4 − ρlϕ4Þ=3þ ϕ3ΔρΓwl, while for drying, we
replace Δρ by −Δρ, ρl by ρg, and Γwl by Γwg. The first

FIG. 5. Surface phase diagrams for LR wall-fluid and fluid-fluid forces showing (a) MMC wetting and drying (dotted), along
ϵw3 ¼ ρlϕ3 and ϵd3 ¼ ρgϕ3, when only ϵ3 and ϕ3 are present, (b) critical drying along ϵd3 ¼ ρgϕ3 and shifted first-order wetting, when
ϵ4 < 0, and (c) shifted first-order wetting, drying, and critical drying, ϵd3 ¼ ρgϕ3 when ϵ4 ¼ ρ�ϕ4 with ϵ4 > 0 and ρ� below the critical
density. The density profile at C∞

ord is flat in (a) but in (b),(c) has a weak algebraic decay governed by the exponent xordð4Þ ¼ 2.
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term is the sharp-kink contribution, while the second is the
soft-kink due to the local adsorption Γwl¼

R∞
0 dzðρðzÞ−ρlÞ

near the wall. Both contributions (and a4) are zero along the
MMC phase boundary. Now suppose ϵ4 < 0, i.e., adding a
higher-order repulsion as would be generated by VðzÞ ¼
−ϵ3=ðzþ σÞ3 with σ a cutoff (as studied by ESW).
Observing that the additional repulsion lowers the adsorp-
tion, so that Γwg;Γwl < 0, it follows that the symmetry
between wetting and drying is broken with a3 < 0 (wetting)
and a3 > 0 (drying). This changes the line of MMC drying
into a line of critical drying, with leq ∝ t−1 and ξk ∝ t−5=2

and preserving the phase boundary ϵd3 ¼ ρgϕ3. The wetting
transition is first-order occurring along the line ϵc3 − ϵw3 ∝
ðTc − TwÞ1=2 lnðTc − TwÞ containing a logarithmic correc-
tion to the NF scaling law (arising directly from the MMC
repulsion) with the film thickness at Tw scaling simply as
leq ∝ ξl. The lines of wetting and drying transitions con-
verge at C∞

ord, at which the density profile has a weak
algebraic decay, ρðzÞ − ρð∞Þ ∼ ϵ4z−xordð4Þ, where at mean-
field level xordð4Þ ¼ 2 (since η ¼ 0) close to the true result
xordð4Þ ≈ 2.14. For ϵ4 > 0 the reverse happens and the line
of MMC drying becomes first order.
Other surface phase diagrams are possible but never

exhibit a nonwetting gap. For example, if ϵ4 ∝ �ðϵ3 − ϵc3Þ,
the wetting and drying transitions are both first order (−) or
both critical (þ) and retain a symmetry. Including a higher-
order coefficient ϕ4 divides either the wetting or drying
branch into critical and first-order sections with the point
between them being MMC (if a4 ¼ 0), tricritical (a4 > 0),
or a critical end point (a4 < 0); see, e.g., Fig. 5(c). Further
details and a complete classification will be given
elsewhere.
In summary, when both the fluid-fluid and wall-fluid

potentials are LR, the lines of wetting and drying always
converge to C∞

ord as in NF. When only the wall-fluid
potential is LR there is indeed a nonwetting gap at Tc,
although this can be closed reproducing the NF phase
diagram for g ¼ 0 with a multicritical point Sp. Our mean-
field predictions are not modified, substantially, when
capillary-wavelike fluctuations [6–8] or the thermal
Casimir effect [24] are accounted for since these are
irrelevant for systems with LR forces. Finally extending
the analytical methods developed here to study wetting in
binary liquid mixtures with LR forces, where experiments
are possible [25], would also allow us to test the generality
of critical point wetting for these systems [26].
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