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High-precision atomic structure calculations require accurate modeling of electronic correlations
typically addressed via the configuration interaction (CI) problem on a multiconfiguration wave function
expansion. The latter can easily become challenging or infeasibly large even for advanced supercomputers.
Here, we develop a deep-learning approach which allows us to preselect the most relevant configurations
out of large CI basis sets until the targeted energy precision is achieved. The large CI computation is
thereby replaced by a series of smaller ones performed on an iteratively expanding basis subset managed
by a neural network. While dense architectures as used in quantum chemistry fail, we show that a
convolutional neural network naturally accounts for the physical structure of the basis set and allows for
robust and accurate CI calculations. The method was benchmarked on basis sets of moderate size allowing
for the direct CI calculation, and further demonstrated on prohibitively large sets where the direct
computation is not possible.
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Precise knowledge of atomic structure is indispensable
for frequency standards in metrology, spectral analysis in
astrophysics, understanding of nuclear phenomena involv-
ing atomic electrons, or physics beyond the standard
model, e.g., space and time variation of fundamental
constants [1]. High performance ab initio atomic structure
codes provide a wide range of electronic properties of
atoms and ions, such as energy levels, radiative transition
rates, g factors, or hyperfine structure constants. The
practical difficulty is many-body effects in atoms or ions
with high atomic number Z and many electrons. The
electronic correlations are typically tackled by the con-
figuration interaction (CI) method based on the multi-
configuration wave function expansion jΨi ¼ P

α cαjΦαi
with unknown coefficients cα obtained as a solution of the
Hamiltonian diagonalization problem ĤjΨi ¼ EjΨi [2].
The size of the involved basis set fjΦαig can easily become
challenging even for state-of-the-art parallelized codes
running on supercomputer systems; see, e.g., recent cal-
culations for Th35þ [3–5], Ir17þ [6,7], or Fe16þ [6,8].

Instead of computations on the full basis, “selected CI”
methods were applied to atomic and molecular systems
using selection criteria based on perturbation theory [9,10]
or the Monte Carlo approach [11,12]. However, perturba-
tion theory still requires computations on the entire basis,
whereas the random selection completely disregards the
properties of the basis states. Fortunately, the application of
machine learning techniques has lead in recent years to
significant progress in selected CI in quantum chemistry
[13–16]. For importing this success in the field of large-
scale atomic computations, the neural network (NN)
approach would be the first choice due to its established
scalability and flexibility [17]. Used in the active learning
algorithm as presented in Refs. [13,14], it would allow us to
iteratively construct a compact wave function that delivers
accurate observables without the computational effort on
the full basis. However, we show here that the usual dense
architectures as applied in Refs. [13,14] lack sufficient
accuracy and often fail. In this work we apply instead a
convolutional NN (CNN)—the architecture well known
from image recognition applications [17,18]. We demon-
strate that this is the natural choice considering the physical
structure of the atomic basis states, and leads to robustness
of the approach and a strong improvement of the computa-
tional results.
In this Letter, we develop an efficient deep-learning

approach to iteratively construct a compact approximative
wave function for high-Z atoms and ions with many
electrons. We address the problem in the coupled basis
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of configuration state functions (CSF) [1,2] characterized by
electronic orbital occupations, and the angular momenta
couplings within and between the orbitals. Typically, the
physical properties of a CSF are determined predominantly
by a few orbitals (different for each CSF). The others form a
“background” consisting of low-energy fully occupied and
high-energy empty orbitals. In analogy to image recognition
applications, the applied CNN efficiently suppresses this
background and highlights the “useful image” of the physi-
cally relevant orbitals in each CSF. We demonstrate that this
natural choice accounting for the physical structure of CSFs
leads to significant improvements in comparison to NNs of
the usual dense type. Our CI solver is based on an iterative
scheme employing the CNN together with the general
relativistic atomic structure package GRASP2018 [19].
The CSFs jΦαi based on N orbitals are uniquely charac-

terized by the set of 3N quantum numbers generically
denoted as α. For orbital k, they consist of the population
nk, the total angular momentum of its electrons Jk, and the
angular momentum Jcplk representing the coupling of Jk and
Jcplk−1 [20,21].We normalize the populations of the orbitals nk
to their maximal capacity, and the angular momenta Jk and
Jcplk to the total angular momentum of the considered energy
level (see also Supplemental Material [22] for the CSF basis
construction). The three classes of input data ñk, J̃k, J̃

cpl
k are

interpreted as color channels of a 1D convolutional input
layer. In Fig. 1(b) we show graphically this color represen-
tation for an exemplary CSF. The value of each parameter is
encoded by the length of the corresponding vertical bar,
whereas the gray horizontal strips indicate the unity bar
length. We consider here the natural ordering of the orbitals
which is default in GRASP2018.
Our network architecture is shown in Fig. 1(a). The input

layer (A) consists of three color channels [see Fig. 1(b)] of
size N. The input is processed with a filter kernel of size
3 (B) resulting in 96 feature maps (C) each of size N − 2.
The latter are mapped to 16 feature maps (D) of size N − 2
by application of a filter kernel of size 1 (thus representing a
purely local transformation). The CNN part (D) is moni-
tored for observation of the background suppression effect
which we show in Fig. 1(c) and discuss further on. The
obtained output of 16 × ðN − 2Þ values is then flattened
and forwarded to a network of four dense layers (E) with
150, 120, 90, and 2 neurons, respectively. The rectified
linear unit (ReLU) defined as maxð0; xÞ was used as the
activation function throughout the NN apart from the two-
neuron output layer (F), where the softmax function is
applied yielding the probabilities of the CSF to be “impor-
tant” or “unimportant.” The categorical cross-entropy was
chosen as the loss function. The NN is trained on batches
using the Adam optimization algorithm with early stopping
based on the classification accuracy evaluated on a vali-
dation set (20% of data excluded in advance from the
training set). We used the PYTHON library KERAS [23,24]
with TENSORFLOW [25] in the back end.

The described NN is employed in an iterative active-
training algorithm based on the scheme from Refs. [13,14].
Each CSF is either important or unimportant: its weight in
the CI wave function wα ¼ jcαj2 either exceeds or does not
exceed a cutoff value w0 chosen in advance. CSFs are
included in the CI expansion iteratively in relatively small
portions based on theNNprediction of their importance. The
diagonalization using GRASP2018 yields the energy and the
coefficients cα. The latter are used for a feedback and
additional training of the NN, monitoring the energy to stop
when the targeted precision is achieved. In each iteration,
CSFs which turned out to be unimportant are excluded from
the CI expansion, but are considered again in later iterations.
Instead of using a fixed cutoff as in Refs. [13,14], we use
a running cutoff taking at the ith iteration a new value
wi < wi−1 < � � � < w1 < w0. This approach is crucial for
avoiding energy convergence to an unwanted value which
does not correspond to the full set, but to a smaller set ofCSFs
having weights that exceed the fixed cutoff value. This point
was also observed in Ref. [15].
The NN needs feedback not only on the selected but also

on rejected CSFs. Therefore, we include in the CI expan-
sion the same amount of randomly picked disregarded

FIG. 1. (a) NN architecture used in the present work. (b) Color
representation of the exemplary CSF from the set SD�ð3p; 9hÞ of
the Re atom as the NN input (A). (c) The background suppression
observed in the neurons of the feature maps (D) of the NN. See
the text and Supplemental Material [22] for details.
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CSFs as the selected ones in every iteration (but the last one
since no NN training follows). Most of these balancing
CSFs are automatically excluded in the next iteration due
to their small weights. Before feeding into the NN, the
training data are reshuffled for avoiding the ordering bias
due to the CSF construction procedure. Some important
CSFs for a particular electronic level are known from the
start and should always be included in the CI set. They form
the primary subset and we do not expose them to the NN at
any stage. We have checked that inclusion of the primary
subset in the training set does not bring any improvement
for the method. At the starting point, the NN is trained on a
random selection of CSFs from the considered basis set
(excluding the primary subset). At the same time, the
distribution of these CSFs over their weights is used to
choose the running cutoff values wi. Throughout this work
we use 1% of CSFs for this starting iteration.
For demonstration, we choose the case of the 187Re

(½Xe�4f145d 56s2) and 187Os (½Xe�4f145d 66s2) atoms and
calculate their ground state energies. These energies have
been recently evaluated with GRASP2018 to extract the
β-decay energy of the 187Re nucleus from experimentally
determined masses of 187Re29þ and 187Os29þ [26]. The basis
sets in Ref. [26] contain states stemming also from addi-
tional configurations obtained by allowing for electronic
excitations from the main configuration. Single (S) and
double (D) excitations from the filled orbitals down to 3p to
the vacant (virtual) orbitals up to 9hwere considered in [26]
resulting in over 90 × 106 CSFs (see Supplemental
Material [22] for details on the basis construction). We
denote these sets here as SDð3p; 9hÞ. Because of the
prohibitively large basis set size, the authors of Ref. [26]
had to preselect about 5 × 106 most important CSFs by
evaluating transition and ionization energies and fitting
them to experimental values [27].
For benchmarking, we apply our method to a smaller

187Re basis set SD�ð3p; 9hÞ of 4 267 362 CSFs in which
only part of the double excitations are allowed, with the
restriction that each virtual orbital can be either doubly
occupied or empty. The moderate size of SD�ð3p; 9hÞ
allows for comparison of our approach to direct GRASP2018
computations. The primary subset consists of 37 220 CSFs
constructed from SD excitations to the valence orbitals and
S excitations to the virtual orbitals. The radial electronic
wave functions are obtained with GRASP2018 in advance on
the primary CSF set using the layer-by-layer procedure as
described in Ref. [28]. Table I shows the results obtained in
each iteration: the energy Epart on the current partial CI set
with respect to the exact value Eall ¼ −454 661.1637 eV
(obtained separately in a direct calculation) and the number
of CSFs in the GRASP2018 run. We note that for CI on a
partial basis the energies always satisfy Epart > Eall [29].
The iterations are labeled by log10 wi where wi is the
running cutoff value at the ith iteration. After the very last
iteration, CSFs unimportant with respect to the value

log10 wi ¼ −11.6 as calculated by GRASP2018 are excluded
from the CI wave function yielding the final CI set with
729 451 instead of 755 766 CSFs. The latter step is helpful
for further calculations on the state, e.g., refining of the
radial wave functions or evaluation of QED corrections
and isotope shifts. Both the direct and the NN-supported
computations could be carried out in a few hours on a few
hundred cores. The peak memory and disk space con-
sumption which are the bottleneck in larger GRASP2018

computations (see Supplemental Material [22]) could be
decreased in this case from a TB to a few hundred GB.
Figure 2 illustrates the growth of the CI wave function

expansion. We plot the number of CSFs from the set
SD�ð3p; 9hÞ not (yet) included in the CI expansion as a
function of the weight log10 wα for each iteration immedi-
ately after the unimportant CSFs are excluded. The dis-
tribution is normalized with respect to the total size of the
SD�ð3p; 9hÞ set and the weights wα are taken from the full

TABLE I. Results of approximate energy calculations on the
SD�ð3p; 9hÞ basis set for the Re atom ground state using our
deep-learning-based approach. Iterations are labeled by log10 wi

where wi is the running cutoff value at the ith iteration. The row
labeled as “Initial” represents the initial iteration on 1% randomly
chosen CSFs.

log10wi CSFs in GRASP Epart − Eall (meV)

Initial 79 521 17 223.3
−8.6 178 901 6431.2
−9.2 364 562 802.9
−9.8 515 289 140.3
−10.4 723 540 31.4
−11.0 755 766 6.4

FIG. 2. The distribution of CSF from the set SD�ð3p; 9hÞ not
(yet) included in the CI expansion of the wave function as a
function of their respective weights log10 wα for each iteration.
The distributions are normalized with respect to the total size of
the SD�ð3p; 9hÞ set. The iterations are labeled by the cutoff
values log10 wi which are additionally illustrated by the vertical
dotted lines.
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GRASP2018 calculation. In each iteration, CSFs are included
in the CI expansion (and thus removed from the depicted
distributions) from the right. The right edge of the dis-
tributions is not completely sharp, meaning that not all
CSFs important with respect to the current cutoff are
included in the CI expansion. The NN selection ensures
that the slope becomes stable in the first iterations and
moves then from right to left.
We have performed the same computation replacing the

CNN by a usual dense NN. We considered two dense NN
architectures: DNN-1 is the dense part (E)—(F) of the
applied CNN [see Fig. 1(a)]; DNN-2 has three hidden
layers with 192, 384, 192 neurons, respectively, possessing
in total a similar number of trainable parameters as the
considered CNN. In Fig. 3 we show the final energy Epart −
Eall in milli-electron-volts obtained in a few computation
repetitions using the CNN and dense networks DNN-1 and
DNN-2. Often, the DNNs fail, and this takes place already
in the first iteration due to the randomly selected and thus
strongly disbalanced training set. In contrast to the DNNs,
our CNN is more robust against this disbalance and failed
only a few times in hundreds of runs. In case the DNNs
do cope with the first iteration, they are still strongly out-
performed by the CNN. The processing of the input data
using a kernel in the CNN plays a twofold role: (a) appli-
cation of the same weights along the input neurons
(independent of the orbital ordering); and (b) revealing
mutual data dependencies for the neighboring input neu-
rons (sensitive to the orbital ordering). A careful analysis on
how these mechanisms contribute to the performance of the
CNN reveals that (a) plays the most important role (see
Supplemental Material [22]).
The CNN tends to treat the fully occupied low-lying

orbitals as well as the completely vacant high-energy
orbitals as a common background. This background is
suppressed and the remaining “useful image” correspond-
ing to the physically relevant partially occupied orbitals is
highlighted. We demonstrate this effect in Fig. 1(c) which
shows the values of the 62 neurons in each of the 16 feature
maps (D) for the exemplary CSF. These neurons are in
positional correspondence with the 64 input neurons (A).
The values in (D) are plotted at the moment when the

computation is completed and the NN is in its final state.
The color intensity of the red dots indicates the (always
non-negative) values normalized to the maximal value in all
the feature maps (higher intensity corresponds to a larger
value). Almost all neurons in the region of the common
background to the left and to the right turn out to have zero
values after the NN training. Further discussion of this
effect and more examples can be found in Supplemental
Material [22].
We switch now to calculations on the large basis sets

SDð3p; 9hÞ for the Re and Os neutral atoms relevant for
the determination of the 187Re β-decay energy in Ref. [26].
These calculations involve basis sets of over 90 × 106 CSFs
each and cannot be performed directly using GRASP2018.
However, it is sufficient to retain for each basis set only the
most important CSFs that deliver a 1 eV precision for the
calculated energy. Using our deep-learning approach, we
could achieve the targeted accuracy in a few days by
performing partial GRASP2018 runs on up to about 5 × 106

CSFs which required 5 TB of memory and 7 TB of disk
space. The primary CSF subsets were constructed as in the
previous example resulting in 37 220 and 32 660 CSFs for
the Re and Os atom, respectively. The radial electronic
wave functions were also here obtained on the primary CSF
sets. Table II shows the Re and Os energies and basis set
sizes at the diagonalization stage in each iteration. The
energy values obtained in the last iteration satisfy our
precision target. We carried out additional verifications by
running the computation on other cutoffs and made sure
that they lead to the same energy value within the required
accuracy. The obtained binding energies of the Re
and Os neutral atoms are Eatom

Re ¼ −454 703.55 eV and
Eatom
Os ¼ −470 036.60 eV, respectively.
In order to compare our results with Ref. [26] where the

electronic binding energy differences δE ¼ Eatom − Eion

between a neutral atom and a 29þ ion for Re and Os were

FIG. 3. Deviation of the final energy on the partial set Epart with
respect to the “full” energy Eall obtained using the CNN (10 runs)
and dense networks DNN-1 and DNN-2 (five runs each). Note
the logarithmic scale on the horizontal axis. The missing DNN
runs have failed.

TABLE II. Results of approximate energy calculations on the
SDð3p; 9hÞ basis set for the ground state of the Re and Os atoms
using our deep-learning-based approach. Iterations are labeled by
log10wi where wi is the running cutoff value at the ith iteration.
The row labeled as “Initial” represents the initial iteration on 1%
randomly chosen CSFs.

Re Os

log10 wi CSFs
−Epart, eV
454 000þ CSFs

−Epart, eV
470 000þ

Initial 971 011 644.55 985 571 −23.64
−8.0 578 018 668.16 628 961 9.07
−8.5 1 609 943 684.00 972 374 25.60
−9.0 2 055 985 697.82 1 345 026 33.04
−9.5 2 550 922 701.65 2 046 765 35.71
−10.0 3 607 689 702.97 2 397 010 36.36
−10.5 4 028 106 703.55 3 185 458 36.60
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provided, we evaluate the energies of the Re29þ and Os29þ
ions on the basis sets SDð3p; 9hÞ. Since these consist of
only 53 885 and 2 455 449 CSFs, respectively, we carry
out the GRASP diagonalization on the full sets directly.
The radial wave functions for the ions were obtained
using the layer-by-layer procedure [28] on the full set
SDð3p; 9hÞ for the Re29þ ion and on a partial set
constructed as a union SDð3p; 5gÞ ∪ SD�ð3p; 6hÞ ∪
Sð3p; 9hÞ for the Os29þ ion. The obtained ion energies
are Eion

Re ¼ −443 804.16 eV and Eion
Os ¼ −459 083.43 eV.

Based on the calculated atom and ion energies, we find
δERe ¼ −10 899.39 eV and δEOs¼−10953.17 eV, which
agree with the values δẼRe ¼ −10 894.5� 25.9 eV and
δẼOs ¼ −10 947.9� 24.6 eV from Ref. [26]. For the
difference ΔE ¼ δERe − δEOs relevant for the computa-
tion of the 187Re β-decay energy, we obtain ΔE ¼
53.78 eV, whereas in Ref. [26] the value ΔẼ ¼ 53.4�
1.0 eV was reported. Our approach allowed us to achieve
the same results as in Ref. [26] without relying on
additional experimental information not always available.
We note that the individual atom and ion energies change
upon inclusion of the QED corrections and further
improvement of the radial wave functions. At the same
time, the obtained value ΔE does not change significantly
due to the cancellation effects originating from similarity
of the Re and Os electronic shells—a fact observed also
in Ref. [26].
In conclusion, we have applied a CNN combined with the

“color” representation of the CSFs for atomic CI calculations
with large basis sets—a natural choice leading to robustness
of the method and a strong improvement in precision.
Analogously to image recognition, our CNN recognizes
and suppresses the background corresponding to the fully
occupied low-lying and the vacant high-energy orbitals,
whereas the “useful image” related to the physically relevant
partially filled orbitals is highlighted. We believe that this
approach can be useful also in other areas where the CI
method is applied. The code for NN-supported GRASP2018

computations is available in Ref. [30] and can be adapted for
the upcoming new GRASP version [31].
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