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The presence of nearby conformal field theories (CFTs) hidden in the complex plane of the tuning
parameter was recently proposed as an elegant explanation for the ubiquity of “weakly first-order”
transitions in condensed matter and high-energy systems. In this work, we perform an exact microscopic
study of such a complex CFT (CCFT) in the two-dimensional OðnÞ loop model. The well-known absence
of symmetry-breaking of the Oðn > 2Þ model is understood as arising from the displacement of the
nontrivial fixed points into the complex temperature plane. Thanks to a numerical finite-size study of the
transfer matrix, we confirm the presence of a CCFT in the complex plane and extract the real and imaginary
parts of the central charge and scaling dimensions. By comparing those with the analytic continuation of
predictions from Coulomb gas techniques, we determine the range of validity of the analytic continuation
to extend up to ng ≈ 12.34, beyond which the CCFT gives way to a gapped state. Finally, we propose a beta
function which reproduces the main features of the phase diagram and which suggests an interpretation of
the CCFT as a liquid-gas critical point at the end of a first-order transition line.
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Introduction.—The notion of universality at continuous
phase transitions is central to our understanding of most
phases of matter. However, there are several examples of
“weakly first-order” transitions in high-energy and con-
densed matter physics which appear continuous at inter-
mediate scales but eventually turn out to be first-order at
larger scales [1–15]. One example is 4D gauge theories
coupled to matter for which the gauge coupling is con-
jectured to run slowly (“walking behavior”) at intermediate
energies but starts running fast again at low energies,
leading to confinement and chiral symmetry breaking
(“conformality loss”) [6]. Another example is the 2D
classical Q-state Potts model, for which the ferromagnetic
phase transition is second-order for Q ≤ 4, but becomes
weakly first order for Q slightly above 4 [1,2,10,13].
Further, numerical studies of the transition between Neel
and valence bond solid states also point toward a weakly
first-order scenario [7,8,12,15].
Recently, it was proposed that fixed point annihilation

[7,8], and more specifically the resulting presence of
complex conformal field theories (CCFTs) [9,10] hidden
in the complex plane of the tuning parameter, could explain
the widespread occurrence of weakly first-order transitions.
In this scenario, the slow RG flow on the real axis is
explained by the presence of a nearby CCFT in the complex
plane, and the properties of the approximately conformal
theory observed at intermediate scales can be derived from
the complex conformal data of the CCFT. Complex

conformal field theories (CFTs) are nonunitary CFTs with
highly unusual behavior, since they have complex central
charge and scaling dimensions, and the RG flow around
them forms a spiral. Exploring complex CFTs is also
relevant from the perspective of understanding phase
transitions in dissipative quantum systems described by
non-Hermitian Hamiltonians [16–27].
The study of CCFTs is however challenging, and few

models and results exist [9,10,13,14,28–32]. First, since the
tuning parameter needs to be complexified, finding a fixed
point requires the tuning of at least two real parameters.
Second, the study of CCFTs has so far relied on holography
[28,32], perturbative methods [14], or on the analytic
continuation of real CFTs [10]. However, these methods
have their limitations: for example, the range of validity of
the analytic continuation is not known.
In this Letter, we propose instead to generalize the

nonperturbative numerical methods which exist for 2D
CFTs [33–35] to the case of complex CFTs. This enables us
to provide a complete characterization of microscopic
models of 2D CCFTs, including the complex central charge
and scaling dimensions, the connection between scaling
operators and microscopic operators, and the finite-size
RG flow.
In order to demonstrate our approach, we work with the

OðnÞ loop model, which is closely related to the Q-state
Potts model in 2D and has the advantage of being self-
tuned to the Potts transition surface [36]. The transition
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surface, residing in the parameter space of the 2D Potts
model generalized to include vacancies, separates the
ferromagnetic and paramagnetic phases and contains two
fixed points. One of these fixed points belongs to the Potts
universality class, and the other belongs to the tricritical
Potts universality [36] class. The two fixed points collide
and annihilate at Q ¼ 4, resulting in a weakly first-order
transition for Q≳ 4 which was recently described in terms
of CCFTs in Ref. [10]. Under the mapping n ¼ ffiffiffiffi

Q
p

, a
finite (respectively diverging) correlation length in the OðnÞ
loop model corresponds to a first-order (resp. second-order)
transition for the Q-state Potts model.
In this context, the first-order nature of the transition in

the Potts model for Q > 4 is related to the well-known
absence of a symmetry-breaking transition in the Oðn > 2Þ
model. This absence can be understood as arising from the
displacement of OðnÞ critical points into the complex plane
of the OðnÞ temperature parameter at n ¼ 2 [37]. This
means the OðnÞ model actually still harbors a critical point
with a diverging correlation length for n > 2, but for a
complex value of the temperature. This critical point is
described by a CCFT and should lead to a “walking” RG
flow on the real axis for n≳ 2. We note that a generalization
of the CCFT analysis to the OðnÞ model was already
proposed in Refs. [10,31].
Model and CFT predictions.—Starting from a truncated

high-temperature expansion of the OðnÞ model on the
honeycomb lattice, one obtains a model of nonintersecting
loops on the same lattice [see Fig. 1(a)] [38,39]:

Z ¼
X

i∈ loop config

nNixli ; ð1Þ

where n of the OðnÞ model is reinterpreted as the loop
fugacity and x−1 is the loop tension [which corresponds to
the temperature of the OðnÞ model with x ¼ βJ]. For each
loop configuration i, Ni is the number of loops, and li is the
total length of all loops. Note that the loop model is well
defined even when n is not an integer.

This model was shown to be critical [33,34,38,40] for
−2 ≤ n ≤ 2 if the loop tension sits on one of two branches:

x ¼ xc;� ≡ �
2� ð2 − nÞ1=2�−1=2: ð2Þ

The xc;þ branch is the so-called dilute branch and sits at
the transition between the short-loop phase in the region
x < xc;þ [which is equivalent to the high-T paramagnetic
phase of the OðnÞ model] and the critical dense loop phase
in the region x > xc;þ[see Fig. 1(b)].
Both branches have a CFT description based on

Coulomb Gas [33,34,38,40–42] techniques with the
following central charge:

c�ðnÞ ¼ ð4 − 7eðnÞ2 � 3eðnÞ3Þ=ð4 − eðnÞ2Þ; ð3Þ

where eðnÞ ¼ ð2=πÞ cos−1 ðn=2Þ is the background charge.
A few notable examples are the Berezinskii-Kosterlitz-
Thouless transition with c�ð2Þ¼1, Ising with cþð1Þ¼1=2,
percolation with c−ð1Þ ¼ 0, and dense polymers with
c−ð0Þ ¼ −2.
A number of scaling dimensions are also known, like

the thermal and magnetic ones [corresponding in the
OðnÞ notation to the lowest singlet and vector operator,
respectively]:

Xt� ¼ 16=g� − 2

Xh� ¼ g�=32 − ð2=g�Þð1 − g�=4Þ2 ð4Þ

with g�ðnÞ ¼ 4� 2eðnÞ. The thermal scaling dimension
probes the response to a change in the loop tension, or
equivalently to a change in temperature of the original OðnÞ
model. The magnetic exponent describes the spin-spin
correlations of the original OðnÞ model.
In order to extend the above CFT predictions to the case

of complex CFTs for n > 2, we follow Ref. [10], in which
an analytic continuation of known CFT predictions for
the Q ≤ 4 Potts model was continued to Q > 4. Since the
Q-state Potts model and the OðnÞ loop models realize the
same CFT branches forQ ¼ n2, it is natural to use the same
analytic continuation here for the Oðn > 2Þ loop model.
[Note however that the operator content is different for
these two theories, and that no equivalent of Eq. (2) exists
for the Potts model].
Based on Eq. (2), one finds that the two critical branches

meet at n ¼ 2, and move to the complex plane for n > 2
[see Fig. 1(b)]. Relatedly, one can easily see from Eqs. (3)
and (4) that the value of the central charge and of the
scaling dimensions becomes complex for n > 2 [see
continuous lines in Figs. 2(b)–2(d)]. Note that, for
n > 2, the two branches are simply complex conjugates
of each other (xc;þ ¼ x�c;−, cþ ¼ c�−, and Xþ ¼ X�

−),
whereas for n < 2 they correspond to very different
physics.

FIG. 1. (a) Example of a loop configuration on the hexagonal
lattice. (b) The location of the critical branches in the complex
x−1 plane as a function of n. The orange (resp. green) line
corresponds to xc;þ (resp. xc;−). RCFT stands for real CFT.
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Numerics at the fixed points.—We now use transfer
matrix numerics to verify the predictions summarized in
Eqs. (2)–(4). We use periodic boundary conditions (PBCs)
along the horizontal direction such that the system forms a
long cylinder with a circumference of size L [see Fig. 1(a)].
Our implementation of the transfer matrix generalizes the
one of Refs. [33,43] and is detailed in the Supplemental
Material [44].
If we order the eigenvalues of the transfer matrix by their

magnitude, jλL;0j ≥ jλL;1j ≥ …, the free energy per site in
the long cylinder limit is given by [33–35]

FL ¼ 2ffiffiffi
3

p
L
logðλL;0Þ: ð5Þ

An estimate for the central charge is then obtained by finite-
size scaling through FL ¼ F∞ þ ðπc=6L2Þ.
The finite-size estimate of the thermal scaling dimension

is related to the gap between λL;0 and the subleading
eigenvalue λL;1:

Xt ¼
2π

L
log

�
λL;0
λL;1

�
: ð6Þ

In order to calculate the magnetic scaling dimension, it is
necessary to define another Hilbert space sector (the so-
called magnetic sector) for which there is a single non-
contractible loop traversing the whole cylinder vertically.
Denoting the leading eigenvalue in that sector as λ̃L;0, the
estimate for Xh is

Xh ¼
2π

L
log

�
λL;0
λ̃L;0

�
: ð7Þ

The numerical results for the real and imaginary parts of
c, Xt, and Xh at x ¼ xc;� are in perfect agreement with the
CFT predictions for a broad range of loop fugacities above
n ¼ 2. We show results up to n ¼ 5 in Fig. 2, but the
agreement actually persists until n ¼ ng ≃ 12.34. We have
thus confirmed the existence of CCFTs in the range
n∈ ½2; ng�.
As shown in Fig. 2(e) (see also the Supplemental

Material [44]), we find a level crossing at n ¼ ng [45]
beyond which the transfer matrix is gapped [i.e.,
logðjλL;0j=jλL;1jÞ ∼Oð1Þ], which means the system has a
finite correlation length. By inspection of the dominant
eigenstate for n > ng, it appears likely that the correspond-
ing phase is adiabatically connected to the short loop phase
obtained for x → 0. We leave the study of the range n > ng
for future work and now focus on n∈ ½2; ng�.
RG flow and phase diagram.—Now that we have

established the existence of CCFTs for n > 2, let us discuss
their broader significance for the phase diagram and the RG
flow. The standard scenario is that the presence of a complex
CFT right above the real axis leads to a slowing down of the
RG flow on the real axis, and hence the walking behavior.

This is usually understood with the following “simple” beta
function: βsimðxÞ ¼ −μ − ðx − x0Þ2, where μ < 0 corre-
sponds to real CFTs on the real axis, and μ > 0 corresponds
to complex CFTs located at x ¼ x0 � i

ffiffiffi
μ

p
[see Figs. 3(a)

and 3(b)].

FIG. 2. (a) Real part of the free energy vs system size for
various n. Solid line shows fit to FL ¼ F∞ þ ðπc=6L2Þ. The fits
were calculated using numerical data points starting from L ¼ 4
to L ¼ 12. Real and imaginary parts of (b) the complex central
charge c� for the two branches, (c) the thermal scaling dimension
Xt�, and (d) the magnetic scaling dimension Xh�. In (b)–(d), the
solid lines are CFT predictions and the dots are numerical results.
All the results are calculated at x ¼ xc;�. The scaling dimensions
Xt� (c) and Xh� (d) are obtained for L ¼ 11. (e) Magnitude of the
largest three eigenvalues of the transfer matrix (for L ¼ 10),
showing a transition for λ0 at n ¼ ng.

(a) (b)

(c) (d)

FIG. 3. Top: RG flow for the simple beta function βsimðxÞ ¼
−μ − ðx − x0Þ2 with x0 ¼ 0.5 and with (a) μ ¼ −0.05 or
(b) μ ¼ 0.05. Bottom: RG flow for the generalized beta function
βgenðxÞ for (c) μ ¼ −0.05 or for (d) μ ¼ 0.05. The separatrix is
shown in blue. The red dots show the critical points, and the gray
dot shows the gapped short loop fixed point at x ¼ 0.
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However, this beta function fails to capture several
properties of the flow. First of all, it predicts ðdδx=dlÞ ¼
i

ffiffiffi
μ

p
δxþOðδx2Þ, with δx ¼ x − xc the distance from the

fixed point, which means the flow is actually circular
around the CCFT until higher order terms in δx are
included. This is not the case for our model since the
linearized flow close to the fixed point is given by the
scaling dimension ðdδx=dlÞ ¼ ð2 − XtÞδxþOðδx2Þ, and
Reð2 − XtÞ ≠ 0.
Second, for any n, there should be an attractive fixed

point at x ¼ 0 corresponding to the short loop phase [high-
T phase of the OðnÞ model]. We thus expect most of the
trajectories emanating from the CCFT to reach x ¼ 0.
However, since the flow around the CCFT is a spiral, there
needs to be a separatrix separating the trajectories which
pass to the right or the left of the CCFT [see Fig. 3(d)].
These features can be reproduced with the following
generalized beta function:

βgenðxÞ ¼ xð−μ − ðx − x0Þ2Þð−μ − ðxþ x0Þ2Þ; ð8Þ

where we added fixed points in the left plane which should
be there by x → −x symmetry since the number of loop
strands is always even.
What is the origin of the separatrix shown in blue in

Fig. 3? Away to study this is to look at the thermal gap Xt
in the complex x plane [see Fig. 4 (top)]. We find that a line
of ReðXtÞ ¼ 0 approaches the CCFT as L → ∞. Such a
line is called equimodular since it corresponds to
jλ0j ¼ jλ1j, and it is expected to host a finite density of
zeros of the partition function in the thermodynamic limit
[46]. Following earlier work [47,48], we propose to
identify this line of zeros with the separatrix of the RG
flow. This line should approach the fixed point as L goes to
infinity following the spiral RG flow. In the Supplemental
Material [44], we show a finite-size study of this flow based
on the magnetic gap Xh. This scenario is reminiscent of the
Lee-Yang edge singularity on the imaginary axis of the
magnetic field for the Ising model at T > Tc. There, a line
of zeros on the imaginary axis ends at a finite imaginary
magnetic field ihc with the nonunitary Lee-Yang CFT
[49,50]. Note that the Lee-Yang CFT sits on the imaginary
axis, and its line of zeros approaches the critical point as a
straight line, whereas here the line of zeros should actually
approach the CCFT following a spiral.
The equimodular line can also be understood as a first-

order transition line since it corresponds to a crossing of the
two dominant eigenvalues of the transfer matrix. Based on
an inspection of the corresponding eigenvectors (see the
Supplemental Material [44]), we interpret this first-order
line as a transition between a gas phase to the left and a
liquid phase to the right. Pictorially [see Fig. 4 (bottom)],
the gas phase is described as a dilute gas of single-hexagon
loops, whereas the liquid phase has a comparatively larger
weight on longer loops. In this context, the CCFT is thus

interpreted as a liquid-gas critical point located at the end of
a first-order transition line.
Based on Fig. 3(d), we expect that all trajectories

emanating from the CCFT end up at x ¼ 0, except for
the separatrix. However, the question remains of where the
separatrix ends. Figure 4 strongly suggests that it connects
to another critical point which was previously reported to
emanate from the x ¼ ∞ point at n > 2 in the OðnÞ loop
model [51]. Indeed, at large x, another bifurcation of critical
points was observed at n ¼ 2 in the OðnÞ loop model: a
repulsive fixed point at x−1 ¼ 0 for n ≤ 2 (describing so-
called fully packed loops [35]) splits at n ¼ 2 into a
repulsive fixed point at x ¼ xPðnÞ and an attractive gapped
fixed point at x−1 ¼ 0which corresponds to a hard hexagon
solid with a threefold breaking of translation invariance.
The critical point at x ¼ xPðnÞ was studied numerically in
Ref. [51] and was found to be consistent with Q ¼ 3 Potts
criticality when n is sufficiently large. Overall, this suggests
a gas-liquid-solid phase diagram with a liquid-gas first-
order line ending in a CCFT, and a melting transition
described by Q ¼ 3 Potts. We note that our conjectured
beta function could be verified through a numerical RG
analysis [47].

FIG. 4. Top: scaled gap ReðXtÞ≡ ð2π=LÞ logðjλ0j=jλ1jÞ for
n ¼ 8 and L ¼ 9. Note that we restricted the calculation of
eigenvalues to the translation-invariant sector. The deep blue lines
indicate equimodular lines. One of them approaches the predicted
position of the CCFT xcðnÞ, shown as a red dot. The black dot is
the location of the Q ¼ 3 Potts transition xPðn ¼ 8Þ from
Ref. [51]. Bottom: phase diagram suggested by the top panel.
The inserts show pictorial representations of the three phases.
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Discussion.—In conclusion, we have established nu-
merically the presence of CCFTs in the OðnÞ loop model
for 2 < n < ng, with ng ≈ 12.34. We have also proposed a
phenomenological beta function which reproduces the
main features of the model, including a line of zeros which
approaches the CCFT as L → ∞ and serves as a separatrix
for the RG flow. We propose that this line of zeros can be
understood as a first-order line transition between a gaslike
and a liquidlike phase. We hope our results motivate further
work on CCFTs in other contexts, like for non-Hermitian
Hamiltonians or “strange correlators” [52–54].
Regarding the abrupt disappearance of the CCFTs at ng,

an interesting observation is that Arg½xc;�ðngÞ�≃ ∓ π=6. In
the large-n limit, typical configurations are dominated by
the shortest loops, which are hexagons of length 6. The
fugacity of these loops is nx6, and the partition function
thus becomes real for Arg½x� ¼ �π=6, which would
explain why a CCFT cannot exist at that angle of the
complex x plane. This argument is however only strictly
correct in the large-n limit, and its extension to finite n is
left for future work.
A final point of discussion is the relation between the

original OðnÞ model and its loop formulation. The main
difference between the two is that the former allows for loop
crossings [55]. Loop crossings correspond to 4-leg water-
melon operators with scaling dimension Xl¼4 ¼ 3g=8−
2=gþ 1, which are irrelevant [i.e., ReðXl¼4Þ > 2] for all
n > 2, so the CCFTs should exist in the original OðnÞmodel
as well.
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