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Intrinsic quantum randomness is produced when a projective measurement on a given basis is
implemented on a pure state that is not an element of the basis. The prepared state and implemented
measurement are perfectly known, yet the measured result cannot be deterministically predicted. In realistic
situations, however, measurements and state preparation are always noisy, which introduces a component
of stochasticity in the outputs that is not a consequence of the intrinsic randomness of quantum theory.
Operationally, this stochasticity is modeled through classical or quantum correlations with an eavesdropper,
Eve, whose goal is to make the best guess about the outcomes produced in the experiment. In this Letter, we
study Eve’s maximum guessing probability when she is allowed to have correlations with both the state and
the measurement. We show that, unlike the case of projective measurements (as it was already known)
or pure states (as we prove), in the setting of generalized measurements and mixed states, Eve’s
guessing probability differs depending on whether she can prepare classically or quantumly correlated
strategies.
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Introduction.—Quantum theory contains a form of
randomness that is not the result of ignorance or any
stochastic behavior. For instance, according to the theory,
the result of implementing a spin measurement along the x
direction on a spin state pointing in theþz direction is fully
unpredictable. This is despite the fact that the description of
the experiment within the theory is complete, in the sense
that the prepared state and implemented measurement are
perfectly known, without any stochastic component. This
form of randomness is intrinsic to quantum theory and
impossible in classical physics [1,2]. Beyond fundamental
considerations, it is also the key element behind any
quantum random-number generator (QRNG).
In real life implementations, however, measurements are

never projective and states are never pure. Noise and
imperfections introduce an unavoidable element of sto-
chasticity that produces an apparent randomness that is not
intrinsic to quantum theory. Therefore, it is a fundamental
problem to design the tools to estimate the correct amount
of intrinsic quantum randomness produced in a quantum
experiment. This question is of relevance from a quantum
foundations viewpoint, but also for the proper design of
QRNGs. In fact, the natural and operational way to model
the stochasticity in the components of the setup is through
classical or quantum correlations with an external observer,
Eve, who can also be interpreted as an eavesdropper and
whose goal is to make the best guess about the outcomes

produced in the experiment. The correlations with Eve are
often named (classical or quantum) side information.
So far, the scenario that has mostly been considered in

the literature is the one in which all the stochasticity comes
from the prepared quantum state. That is, the state of the
system is no longer pure, but the measurement is still
assumed to be projective. The main goal of this work is to
study Eve’s guessing probability about the outcomes of a
quantum measurement when she is allowed to have
correlations with both the state and the measurement.
We work in a completely device-dependent setting, where
the state of the system and the measurement have been fully
characterized, and consider two alternative formulations of
this problem: a classical and a quantum one. In the classical
picture, Eve can sample a random variable Λ given the
value of which there is no stochasticity in her description of
the experiment. For the quantum case, we consider the
model of quantum side information involving a generalized
Naimark dilation of the user’s measurement, introduced by
Frauchiger et al. [3]. In this model, Eve is allowed to have a
quantum system E correlated with the system being
measured and with the ancillary system in the dilation.
It is a well-known result that when the measurement is

assumed to be projective (or, more generally, extremal),
Eve’s guessing probability in the classical and quantum
pictures coincide. Our first result (Theorem 2) is that this is
also the case when the measurement is arbitrary but the
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state is pure. Then, we move to the more relevant case in
which both the prepared state and the implemented
measurement are subject to (in general, correlated) noise,
and provide a framework to estimate the produced quantum
randomness. For this general scenario, we first show that
Eve’s guessing probability in the quantum picture is always
greater than or equal to the classical one (Theorem 3). Our
main result, however, is that there exist states and mea-
surements for which the inequality is strict (Theorem 4). In
Table I we summarize the relative strengths of classical and
quantum guessing probabilities for the different combina-
tions of types of states and measurements. We finally
illustrate the applicability of our approach by considering
an experiment in which noisy single-photon detectors are
applied to the two-mode state resulting from a single
photon impinging into a balanced beam splitter. The
bounds on the guessing probability we derive demonstrate
that Eve could make a more informed guess on the obtained
results than when using the measurement model in [3].
Noisy preparation.—Before presenting our contribu-

tions, it is worth reviewing the known results for the
setting of a projective measurement (PVM) on a system in a
mixed state. Let us start with a toy example. Consider that a
measurement in the computational basis fj0i; j1ig is
conducted on a qubit S in the jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

state
and that the outcome þ1 is obtained. Suppose that this
outcome was to be communicated to an interested user,
Alice, but, before that, an eavesdropper, Eve, learns this
outcome and then destroys any record of it. If
Alice, knowing that the measurement was performed but
ignoring the outcome, wants to describe the state of system
S after the measurement, she has to associate to it the
ensemble of states fpXðxÞ; jxig with pXð0Þ ¼ pXð1Þ ¼
1=2 and represent it with the maximally mixed state
ðI=2Þ ¼ 1

2
½j0ih0j þ j1ih1j�. Therefore, to the question of

what would be the result of a second measurement on S in
the computational basis, she can do no better than a
uniformly random guess. Eve, on the other hand, having
the additional classical side information of the first
measurement’s outcome, has a better (in fact, complete)
description of the state of S and, therefore, can determin-
istically predict that the second outcome will be þ1.
As this simple example shows, when a system S is in a

mixed state ρS compatiblewith an ensemble fpΛðλÞ; jφλiSg,
in order to determine the predictability of the outcomes of a

measurement fΠx
Sgx on S one has to consider the possibility

of Eve having access to the random variable (or, the
classical noise) Λ. In that case, after learning (or, sampling)
a value λ for Λ, Eve knows that S is in the state jφλiS
and, hence, her best prediction for the outcome of fΠx

Sgx
would be argmaxxhφλjΠx

SjφλiS. The probability that she
guesses correctly is obtained averaging over Λ, i.e.,P

λ pðλÞmaxxhφλjΠx
SjφλiS. Finally, since for a given mixed

state ρS there are infinitely many ensembles compatiblewith
it, to assess the unpredictability of the outcomes of fΠx

Sgx
one has to consider them all, as some might provide better
predicting power to Eve than others. This rationale leads to
defining Eve’s classical guessing probability as

pC
guessðXjΛ;ρS;fΠx

SgxÞ≔ max
pðλÞ;jφλiS

X
λ

pðλÞmax
x

hφλjΠx
SjφλiS

subject to
X
λ

pðλÞjφλihφλjS¼ρS:

ð1Þ

Notice that when ρS ¼ jψihψ jS is pure, because of its
extremality in the set of states, pC

guessðXjΛ; ρS; fΠx
SgxÞ ¼

maxxhψ jΠx
SjψiS and, hence, all the observed randomness is

of a quantum origin.
One could have considered that Eve, rather than having

access to some classical random variable Λ, has access to
another quantum system E (or, to the environment) such
that the global state ρSE ¼ jψihψ jSE is (without loss of
generality) pure. A measurement of fΠx

Sg on S produces the
classical outcome x with probability pðxÞ ¼ Tr½Πx

SρS� and
steers Eve’s system E to the state ρxE ¼ TrS½ðΠx

S ⊗ IEÞjψi
hψ jSE�=pðxÞ. Knowing this, Eve would then look for a
measurement fMx

Egx on her system E that maximizes the
probability that its outcome (her guess) is x when the state
steered on her system was ρxE—in other words, a meas-
urement maximizing

P
x pðxÞTr½Mx

Eρ
x
E�, the average prob-

ability to distinguish the states ρxE occurring with
probability pðxÞ. Eve’s quantum guessing probability [4]
is then given by

pQ
guessðXjE;ρS;fΠx

SgxÞ≔ max
fMx

Egx

X
x

pðxÞTr½Mx
Eρ

x
E�

¼ max
fMx

Egx

X
x

hψ jΠx
S⊗Mx

EjψiSE; ð2Þ

TABLE I. Relationship between the classical and quantum guessing probabilities. Prior to this work, they were only known to be
equivalent for projective measurements. In this work we proved (i) the equivalence for pure states and an arbitrary POVMs and (ii) that
the quantum guessing probability can be strictly larger than the classical in the most general scenario.

Projective measurement General POVM

Pure state pQ
guessðXjEÞ ¼ pC

guessðXjΛÞ pQ
guessðXjEÞ ¼ pC

guessðXjΛÞ [This Letter]
General state pQ

guessðXjEÞ ¼ pC
guessðXjΛÞ pQ

guessðXjEÞ ≥ pC
guessðXjΛÞ [This Letter]

∃ ρ, fMx
Sgx pQ

guessðXjE; ρ; fMx
SgxÞ > pC

guessðXjΛ; ρ; fMx
SgxÞ [This Letter]
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where jψiSE is any fixed purification of ρS (they are all
equivalent up to a unitary in E, which can be absorbed in
the optimization over fMx

Egx). Given that the states ρxE
are, in general, not diagonal in the same basis, we say that
Eve holds quantum side information about the random
variable X.
Theorem 1 states the well-known result that these two

different ways of quantifying Eve’s predicting power are
equivalent. In other words, entanglement does not provide
Eve with an advantage in the task of guessing the outcomes
of a PVM on a mixed state.
Theorem 1.—For every state ρS and every PVM fΠx

Sgx,

pC
guessðXjΛ; ρS; fΠx

SgxÞ ¼ pQ
guessðXjE; ρS; fΠx

SgxÞ:

This result, which in fact holds for any extremal measure-
ment, is often assumed (see, e.g., [ [5], Section 8.2]) but, to
our knowledge, no explicit proof of it appears on the
literature. It follows from the fact that any measurement on
Eve’s system E defines a convex decomposition of the state
ρS of system S, and that any decomposition (in particular,
the optimal) can be steered in this way. In the following, we
prove a more general result (Theorem 3) from which
Theorem 1 follows as a corollary.
Noisy measurement.—Before studying the most general

scenario, let us first consider the case in which a general
measurement, represented by a positive-operator valued
measure (POVM) fMx

Sgx, is measured on a system S in a
pure state jϕiS. Given that the set of POVMs is, just like the
set of quantum states, convex [6], we can proceed via
analogy with the case of a mixed state and assume that Eve
can now sample a random variable Λ such that Mx

S ¼P
λ pðλÞMx;λ

S with fMx;λ
S gx POVMs for all λ. With her

knowledge of λ, her best prediction for the outcome of the
measurement on S is argmaxxhϕjMx;λ

S jϕi and this is correct
with probability

P
λ pðλÞmaxxhϕjMx;λ

S jϕi. Finally, by let-
ting Eve optimize over all possible convex combinations,
her classical guessing probability is

pC
guessðXjΛ; jϕiS; fMx

SgxÞ
≔ max

pðλÞ;fMx;λ
S gx

X
λ

pðλÞmax
x

hϕjMx;λ
S jϕiS

subject to
X
λ

pðλÞMx;λ
S ¼ Mx

S for all x: ð3Þ

Analogously to the case of a pure state, when fMx
Sgx

is extremal (but not necessarily projective [6]) we
have completely intrinsic quantum randomness, that is
pC
guessðXjΛ; jϕiS; fMx

SgxÞ ¼ maxxhϕjMx
SjϕiS.

A notion of a quantum guessing probability for the case
of general POVMs was given in [3]. One assumes that what
is seen as a POVM fMx

Sgx on system S is, in fact, a PVM
fΠx

SAg on S and an ancillary system A. In fact, fΠx
SAgx is a

Naimark extension of fMx
Sgx and the correlations with Eve

are modeled via a mixed state σA on A, of which she holds a
purification jψAEi. See Fig. 1 for a schematic description of
this model of quantum side information. Then, as in the
case studied in the previous section, Eve optimizes over
measurements fMx

Egx on her system E trying to maximize
on average the correlation hϕ;ψ jΠx

SA ⊗ Mx
Ejϕ;ψiSAE.

Eve’s quantum guessing probability is thus given by

pQ
guessðXjE; jϕiS; fMx

SgxÞ
≔ max

fΠx
SAgx;jψiAE;fMx

Egx

X
x

hϕ;ψ jΠx
SA ⊗ Mx

Ejϕ;ψiSAE

subject to

TrA½Πx
SAðIS ⊗ TrE½jψihψ jAE�Þ� ¼ Mx

S for all x: ð4Þ

There is an important difference between Eq. (4) and the
analogous in the framework introduced in [3]. In the latter,
the particular projective implementation ðfΠx

SAgx; σAÞ for a
given POVM fMx

Sgx has to be specified by the user. In this
work, we let it be chosen, in fact optimized, by Eve. This is
more natural when quantifying randomness, especially in
adversarial scenarios. Our first result, Theorem 2, is the
analogous of Theorem 1, now for noisy measurements and
pure states, instead of noisy states and PVMs.
Theorem 2.—For every pure state jϕiS and every

POVM fMx
Sgx,

pC
guessðXjΛ; jϕiS; fMx

SgxÞ ¼ pQ
guessðXjE; jϕiS; fMx

SgxÞ:

Theorem 2, in fact, follows as a corollary of a theorem
for the most general scenario, which we state in the
following section.
Noisy preparation and measurement.—We arrive, now,

at the most general setting. Let us consider that a POVM
fMx

Sgx is measured on a system S in a state ρS. When
considering classical side information, we now let Eve
choose convex decompositions of both the state and the

FIG. 1. Schematic description of our model for quantum
side information. Eve chooses a projective implementation
ðfΠx

SAgx; σAÞ of the user’s POVM fMx
Sgx and she is allowed

to be entangled with both the system S and the ancilla A. With
this, she optimizes over measurements on her subsystem maxi-
mizing the correlation with the user’s measurement outcomes
[see Eq. (6)].
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measurement. Her classical guessing probability is thus
given by

pC
guessðXjΛ; ρS; fMx

SgxÞ
≔ max

pði;jÞ;jφiiS;fMx;j
S gx

X
i;j

pði; jÞmax
x

hφijMx;j
S jφiiS

subject toX
i;j

pði; jÞjφiihφij ¼ ρS

X
i;j

pði; jÞMx;j
S ¼ Mx

S for all x

X
i;j

pði; jÞhφijMx;j
S jφii ¼ Tr½Mx

SρS�: ð5Þ

The last condition in this optimization problem states that
Eve’s strategy, although potentially correlating the choices
of pure state and extremal measurement, cannot be arbi-
trary, as it must reproduce the observed statistics on S. In
the restricted cases of the previous sections, we do not need
to explicitly impose this because it follows immediately
from the convex decomposition requirement.
In the case of quantum side information, we let Eve hold

a purification of the joint state ρSA of the system S plus the
ancillary system used for her choice of a projective
implementation ðfΠx

SAg; σAÞ of fMx
Sgx. Notice that we

do not assume that ρSA ¼ ρS ⊗ σA. Eve’s quantum guess-
ing probability is thus given by

pQ
guessðXjE;ρS;fMx

SgxÞ
≔ max

fΠx
SAgx;jψiSAE;fMx

Egx

X
x

hψ jΠx
SA ⊗Mx

EjψiSAE

subject to

TrAE½jψihψ jSAE� ¼ ρS

TrA½Πx
SAðIS ⊗ TrSE½jψihψ jSAE�Þ� ¼Mx

S for all x

hψ jΠx
SA ⊗ IEjψiSAE ¼ Tr½Mx

SρS�: ð6Þ

As a warm up for our main result, we first state
Theorem 3, whose proof we defer to the Supplemental
Material [7]. Its first part says that, as expected, any general
strategy involving classical side information can be imple-
mented in the quantum picture. Its second part is a
sufficient condition for there to be an equality between
the classical and the quantum guessing probabilities in this
general scenario.
Theorem 3.—Let ρS be a state, fMx

Sg a POVM,
and pC

guessðXjΛ; ρS; fMx
SgxÞ and pQ

guessðXjE; ρS; fMx
SgxÞ

as defined in Eqs. (5) and (6), respectively. Then,
(1) pC

guessðXjΛ; ρS; fMx
SgxÞ ≤ pQ

guessðXjE; ρS; fMx
SgxÞ; (2) if

pQ
guessðXjE; ρS; fMx

SgxÞ has an optimal solution hfΠx
SAgx;

jψiSAE; fMx
Egxi such that the postmeasurement states on SA

ρxSA ¼ TrE½ðISA ⊗ Mx
EÞjψihψ jSAE�

hψ jISA ⊗ Mx
EjψiSAE

are all separable, then pQ
guessðXjE; ρS; fMx

SgxÞ ≤
pC
guessðXjΛ; ρS; fMx

SgxÞ.
It is straightforward to see that Theorems 1 and 2

immediately follow as a corollaries of Theorem 3. For
example, if ρS ¼ jϕihϕjS, then the postmeasurement
states on SA after any measurement on E are necessary
separable (in fact, product), implying then, by Theorem 3,
that pC

guessðXjΛ; jϕiS; fMx
SgxÞ ¼ pQ

guessðXjE; jϕiS; fMx
SgxÞ.

Same reasoning holds for Theorem 1.
From the second part of Theorem 3 it follows that, if

there is to be an advantage for Eve in the quantum scenario,
it must come from her preparing an entangled state between
S and A via her measurement. Building on this fact, our
main result, Theorem 4 below, is the construction of a 4-
outcome qubit measurement (in fact, a family of these) for
which Eve’s quantum guessing probability is perfect and
strictly greater than the classical one.
Theorem 4.—There exists a 4-outcome qubit POVM

fMx
Sgx such that

1 ¼ pQ
guess

�
XjE; IS

2
; fMx

Sgx
�

> pC
guess

�
XjΛ; IS

2
; fMx

Sgx
�
:

Proof sketch.—The proof of Theorem 4 can be found in
the Supplemental Material [7]. Here, we sketch the main
parts. Let fjΦθ

xig4x¼1 be the parametric family, indexed by
θ∈ ½0; π=2�, of entangled bases for a space of two qubits
defined in [ [8], Eq. (3)]. We set

fΠx;θ
SAgx ¼ fjΦθ

xihΦθ
xjgx and ρSA ¼ ISA

4
;

and, therefore,

fMx;θ
S gx ¼

�
TrA

�
Πx;θ

SA ·
ISA
2

��
x

and ρS ¼
IS
2
:

It is straightforward to see that Eve can achieve
pQ
guessðXjE; ρS; fMx;θ

S gxÞ ¼ 1 if she steers the ensemble
f1=4; jΦθ

xigx on SA by measuring her share of jψiSAE ¼P
x 1=2jΦθ

xiSAjxiE in the fjxig basis. As for the classical
guessing probability being strictly below 1, this follows
from two technical results that we prove in the
Supplemental Material [7]. The first one states that for
the settings in which extremal measurements are neces-
sarily rank one (e.g., d2-outcome measurements, where d is
the dimension of S), having pC

guessðXjΛ; ρ; fMx
SgxÞ ¼ 1

implies that fMx
Sgx is a convex combination of PVMs.

In [ [9], Eq. (56)], the class of 4-outcome qubit POVMs that
are convex combinations of PVMs was shown to be
definable with an semidefinite program. We numerically
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checked that for values of θ∈ ½0; π=10�, the POVMs
fMx;θ

S gx are not a convex combination of PVMs [10]. To
end the proof, and for concreteness, we set fMx

Sgx ¼
fMx;θ

S gx for θ ¼ 0. ▪
We conclude this section with a corollary to Theorem 3,

which applies to a restricted adversarial setting. Consider
the case in which the quantum adversary Eve is restricted to
having two separate systems E1 and E2, one purifying ρS
and the other one purifying σA, which she cannot measure
jointly. Corollary 1 below states that, in this restricted
setting, every quantum strategy is classically simulable.
Corollary 1.—Let p̃Q

guessðXjE; ρS; fMx
SgxÞ be as in Eq. (6)

with the additional restriction that jψiSAE ¼ jψ1iSE1
jψ2iAE2

and Mx
E ¼ Mx

E1
⊗ Mx

E2
. Then,

p̃Q
guessðXjE; ρS; fMx

SgxÞ ≤ pC
guessðXjΛ; ρS; fMx

SgxÞ:

It is unclear to us whether, on the other hand, every
general classical strategy of Eq. (5) can be reproduced by
these restricted quantum strategies. Notice that the quantum
strategies that we build from classical strategies in the proof
of the first part of Theorem 3 fall outside this restricted set.
We leave this question for future research.
Application to a QRNG.—In [ [3], Examples 1–3], the

following simple model of an imperfect QRNG based on a
beam splitter (BS) with inefficient detectors is considered.
Let jψi12 ≔ ð1= ffiffiffi

2
p Þðj10i þ j01iÞ be the two-mode state

obtained after sending a single photon onto an ideal BS. Let
there be detectors with efficiency μ∈ ½0; 1� at each of two
output paths of the BS and let M1

D ¼ μj1ih1jD be the
operator of a two-outcome POVM fM0

D;M
1
Dg representing

the detection of 1 photon on pathD∈ f1; 2g. If we measure
each path separately, the overall measurement can be
represented by the POVM

Mμ ¼ fM0
1 ⊗ M0

2;M
0
1 ⊗ M1

2;M
1
1 ⊗ M0

2;M
1
1 ⊗ M1

2g:

As we noted before, in order to use the framework in [3] to
quantify the unpredictability of this QRNG’s outcomes
one has to decide on a particular projective implementation
of fMx

Sg. In [ [3], Example 3], the authors consider the
projective implementation ðfΠx

110 ⊗ Πy
220 gx;y; σ10 ⊗ σ20 Þ of

Mμ with

Π1
DD0 ¼ j1ih1jD ⊗ j1ih1jD0 and

σD0 ¼ ð1 − μÞj0ih0jD0 þ μj1ih1jD0 : ð7Þ

In Fig. 2, we plot Eve’s guessing probability for this particular
projective implementation

fðμÞ ≔ max
fMx;y

E gx;y

X
x;y

hψ jΠx
110 ⊗ Πy

220 ⊗ Mx;y
E jψi110220E; ð8Þ

with jψi110220E a fixed purification of jψihψ j12 ⊗ σ10 ⊗ σ20

and compare it to pQ
guessðXjE; jψi12;MμÞ, as a function of the

(decreasing) efficiency μ of the detectors [10].
We see that, for every value of the efficiency μ∈ ð0; 1Þ,

fixing the particular projective extension in Eq. (7) strictly
decreases Eve’s maximal guessing probability. In
other words, the projective implementation in Eq. (7) leads
to an underestimation of Eve’s guessing probability for
every μ∈ ð0; 1Þ.
Conclusions.—In this Letter, we have studied the unpre-

dictability of the outcomes of a general quantum meas-
urement from the point of view of an eavesdropper holding
side information correlated to both the state of the system
and the measurement. We have shown that, while the
quantum and classical guessing probabilities coincide in
the case of extremal states (i.e., pure) or extremal mea-
surements, equivalence does not hold in general.
The classical and quantum guessing probabilities not

coinciding in the general scenario has immediate conse-
quences for the design of device-dependent QRNGs, as
proper justifications should be issued regarding which of
the two pictures is assumed. However, being the charac-
terization of intrinsic randomness is quite a general
quantum mechanical problem, our result might find appli-
cability beyond QRNGs.
As for future research directions, it would be interesting

to characterize the set of states and measurements for which
there is a quantum advantage in the guessing probability.
Last but not least, from a practical perspective, it is
important to come up with ways to compute (or, at least,
computably approximate from above) these quantities.

FIG. 2. Comparison between our work and [3]. In this plot we
show that if, rather than assuming the particular projective
implementation of inefficient detectors on the outputs of an ideal
BS used in [3] and reproduced in Eq. (7), we let it be chosen by
Eve, her guessing probability is strictly bigger for every value of
the efficiency μ∈ ð0; 1Þ.
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Note added.—While completing this work we became
aware of a recent work [11] in which a similar approach
to characterize the intrinsic randomness under quantum
measurements is introduced.
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