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Quantum correlations and nonprojective measurements underlie a plethora of information-theoretic
tasks, otherwise impossible in the classical world. Existing schemes to certify such nonclassical resources
in a device-independent manner require seed randomness—which is often costly and vulnerable to
loopholes—for choosing the local measurements performed on different parts of a multipartite quantum
system. In this Letter, we propose and experimentally implement a semi-device-independent certification
technique for both quantum correlations and nonprojective measurements without seed randomness. Our
test is semi–device independent in the sense that it requires only prior knowledge of the dimension of the
parts. We experimentally show a novel quantum advantage in correlated coin tossing by producing specific
correlated coins from pairs of photons entangled in their transverse spatial modes. We establish the
advantage by showing that the correlated coin obtained from the entangled photons cannot be obtained
from two two-level classical correlated coins. The quantum advantage requires performing qubit trine
positive operator-valued measures (POVMs) on each part of the entangled pair, thus also certifying such
POVMs in a semi-device-independent manner. This proof of concept firmly establishes a new cost-effective
certification technique for both generating nonclassical shared randomness and implementing nonclassical
measurements, which will be important for future multiparty quantum communications.
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Introduction.—Correlations play an integral role in
information processing be it classical or quantum.
Nature presents us with composite systems consisting
of correlations among multiple subsystems, that cannot
be explained if the subsystems are separable [1–6].
Characterizing such nonclassical correlations has been
central to quantum theory. Aside from testing Bell inequal-
ities, recent developments in quantum technology provide
us with the tools to detect nonclassicality of correlations
either as a pseudotelepathy game [7,8] or in a communi-
cation task assisted by those correlations [9,10]. Both cases
involve randomizing over the choice of inputs (measure-
ment settings in the first case and preparation and meas-
urement in the second case). In this work, we implement a
new technique of detecting nonclassical correlations, which
does not require costly seed randomness for inputs. As a
trade-off the experimenter is required to know only an
upper bound to the dimension of the subsystems in use,
hence the technique is semi–device independent. Besides
foundational interest, this new tool paves the way for a cost-
effective characterization of nonclassical resources in
quantum information and computation.

We follow an operational approach by considering the
task of generating shared randomness between two distant
parties. Shared randomness (SR), also known as public
or correlated randomness (as opposed to private random-
ness [11]), can be thought of as a joint probability distri-
bution over random variables shared between two distant
parties, that cannot be factorized. Mutual information is a
well-known quantifier of such correlations and is a bona
fide measure for the distant parties agreeing on a string of
measurement outcomes, given a common source [12–14].
Based on mutual information, shared randomness has been
established as a useful resource in a number of tasks:
privacy amplification, simultaneous message passing, sim-
ulation of noisy classical and quantum channels, secret
sharing, simulation of quantum correlations, and Bayesian
game theory, to name a few [15–28]. Therefore, the
generation of shared randomness from some physical
system is a question of utmost practical relevance. In an
operational theory, SR between two distant parties can be
obtained from a bipartite system prepared in some corre-
lated state. In practice, the two parties could each be given a
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part of a correlated pair of classical or quantum coins which
they could use for “coin tossing.” Each party performs a
local operation on their respective parts of the composite
system which results in correlated outcomes and hence SR.
Here, we demonstrate an experimental quantum advan-

tage in generating SR between two parties. Particularly, we
show that a two-qubit system prepared in a maximally
entangled state can yield some desired SR, that otherwise is
unobtainable from the corresponding classical system—two
two-level correlated classical coins which we call two-2-
coin. This in turn establishes a nonclassical feature of the
two-qubit system which distinguishes it from its classical
counterpart. Importantly, in our case, a single measurement
—positive operator value measure (POVM)—is performed
on each part of the entangled pair. Therefore, unlike Bell
tests (see [29–31]), no randomization over the choice of
local measurements is required for establishing this non-
classicality. In the experiment, we use transverse-mode
entangled photon pairs produced via degenerate sponta-
neous parametric down-conversion as the two-qubit system.
The advantage is established through a payoff (different
from mutual information) in a game played between two
distant parties [32]. The payoff is upper bounded by a
threshold value when the parties share a two-2-coin state,
whereas a better payoff can be obtained from a two-qubit
singlet state even when the state is noisy. The resulting
quantum advantage requires generalized measurements, viz.
POVMs [33,34] on the local parts of the shared entangled
state. The advantage cannot be obtained from local projec-
tive measurements, also known as von Neumann measure-
ments [35] and subsequent postprocessing of the outcome
statistics. Payoff exceeding the classical threshold value
ensures that the measurements are not projective, and thus
establishes a semi-device-independent test of generalized
measurement.
Correlated coin tossing.—The operational utility

of SR can be understood within the framework of resource
theory [36]. Sources of two random variables X and Y held
by two distant parties, Alice and Bob, will not yield
any SR whenever the joint probability distribution is in
the product form, i.e., PðX; YÞ ¼ PðXÞPðYÞ; here, PðZÞ≡
fpðzÞjpðzÞ ≥ 0 and

P
z∈Z pðzÞ ¼ 1g denotes a probability

distribution on Z. On the other hand, the joint source
produces a nonzero amount of shared randomness when the
distribution cannot be written as a product. The amount of
SR can be quantified by the entropic function called mutual
information, IðX∶YÞ ≔ HðXÞ þHðYÞ −HðX; YÞ; where
HðZÞ ≔ −

P
pðzÞlog2pðzÞ denotes the Shannon entropy

associated with the source PðZÞ [37]. A source PðZÞ can be
converted into a different one P0ðZ0Þ by a stochastic map
SZ→Z0

, represented by a jZ0j × jZj matrix having non-
negative real elements with the entries in each column
adding up to unity [38]. While constructing the resource
theory of SR, the free operations on a bipartite source
PðX; YÞ are given by the product of stochastic maps applied

on the individual parts, i.e., instead of a general stochastic
matrix of the form SXY→X0Y 0

only product of local stochastic
matrices SX→X0

and SY→Y 0
are allowed as free. For con-

venience, the free operations can be represented as a tensor
product, SX→X0 ⊗ SY→Y 0

[32].
Physically, SR can be obtained from a composite system

prepared in some correlated state which is shared between
distant parties. Alice and Bob perform local operations on
their respective parts of the composite state resulting in
random but correlated outcomes. Within the framework of
generalized probability theory, the state space of such a
bipartite system is described by ΩA ⊗ ΩB, where ΩK
denotes the marginal state space [39]. For instance, the
state space of d-level classical system is the d simplex, a
convex set embedded in Rd−1 having d number of extremal
points. The state space of a two-d-coin, shared between two
parties Alice and Bob, is defined as, CðdÞ≡ f½pð11Þ;
pð12Þ;…; pðddÞ�TjpðijÞ ≥ 0, ∀ i; j∈ f1;…; dg, andP

i;j pðijÞ ¼ 1g (also see [40]). The quantum analog of
two-d-coin is a two-qudit system associated with the
Hilbert space Cd

A ⊗ Cd
B, and the corresponding state space

is given by DðCd
A ⊗ Cd

BÞ; where DðHÞ denotes the set of
density operators acting on the Hilbert space H. From a
quantum state, ρAB ∈DðCd

A ⊗ Cd
BÞ, Alice and Bob can

generate shared randomness (classically correlated coin) by
performing local measurements on their respective parts
(see Fig. 1). By Cðk → dÞ, with k ≤ d, we denote the set of
two-d-coin states that can be obtained from the set of two-
k-coin states CðkÞ by applying free local stochastic maps
Sk→d
A=B on Alice’s and Bob’s part of the states. Similarly,

Qðk → dÞ denotes the set of two-d-coin states obtained by
performing d-outcome local measurements on Alice’s and
Bob’s parts of the bipartite quantum states DðCk

A ⊗ Ck
BÞ.

We are now in a position to present our first result as stated
in the following proposition (see Appendix A in
Supplemental Material [41] for proof).
Proposition 1.—For every d≥3,Cð2→dÞ⊆Qð2→dÞ⊊

CðdÞ, whereas Qð2 → 2Þ ¼ Cð2Þ ¼ Cð2 → 2Þ.
As evident from this proposition, a quantum advantage

in SR generation is possible if we consider the generation of

Source

a

b

FIG. 1. A trusted source is emitting bipartite correlated systems
of local dimension 2, which are then being measured by spatially
separated black box devices, which outputs a∈ f1;…; dg and
b∈ f1;…; dg. The sets of observed joint probability distributions
Pða; bÞ for d > 2, are different for classical and quantum sources.
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a higher dimensional correlated coin state starting from a
lower dimensional correlated coin state. More precisely, a
proper set inclusion relation Cð2 → dÞ ⊊ Qð2 → dÞ for
some d ≥ 3 establishes a quantum advantage in correlated
coin state generation, which is experimentally testable
through the game introduced in [32].
Quantum advantage in correlated coin tossing.—

Consider a game GðnÞ involving Alice and Bob working
in an organization. They buy their lunch from one of
the n restaurants fr1;…; rng. The reimbursement policy
of the organization ensures the maximum reimbursement of
the lunch bill when (1) Alice and Bob do not end up in the
same restaurants on the same day, and (2) their probability
of visiting different restaurants should be identical in the
long run (see Appendix B in [41] for details). Achieving
the maximum reimbursement requires Alice and Bob to
share some classical shared randomness which they use to
decide which restaurants to go in a particular day.
Satisfying (1) and (2) (perfect success) of the game Gð3Þ
requires Alice and Bob to share a coin Cacð3Þ ≔ 1

6
ð0;

1; 1; 1; 0; 1; 1; 1; 0ÞT ∈Cð3Þ. As it turns out, this particular
coin cannot be generated from any of the coin states inCð2Þ
by applying free operations. The optimal payoff Alice and

Bob can havewith aCð2Þ coin isRCð2Þ
max ð3Þ ¼ 1=8 < 1=6 ¼

Rmaxð3Þ (see Supplemental Material [41]). In the quantum
case, Alice and Bob, however, can start their protocol by
sharing a noisy singlet state

Wp ≔ pjψ−ihψ−j þ ð1 − pÞ I2
2
⊗

I2
2
; p∈ ½0; 1�; ð1Þ

where jψ−i≔ ð1= ffiffiffi
2

p Þðj0i⊗ j1i− j1i⊗ j0iÞ with fj0i; j1ig
denoting the eigenstates of Pauli σz operator. Both of them
perform the trine POVM

M≡
�
ei ≔

1

3
ðI2 þ n̂i:σÞ

�
∶ n̂i ≔ ðsinθi;0; cosθiÞT;

where θ1 ¼ 0; θ2 ¼ 2π=3; θ3 ¼ 4π=3; ð2Þ
on their respective qubits. This results in a shared coin
state Cpð3Þ ≔ ðfp; sp; sp; sp; fp; sp; sp; sp; fpÞT ∈Cð3Þ,
with fp ≔ ð1 − pÞ=9, sp ≔ ð2þ pÞ=18. This manifests
in the payoff

Rpð3Þ ≔ min
i≠j

PðijÞ ¼ ð2þ pÞ=18; ð3Þ

if Alice and Bob visit the ith restaurant when the ith
outcome clicks in their respective measurements. A quan-
tum advantage is demonstrated whenever Rpð3Þ > 1=8.
Quantum states Wp ∈DðC2 ⊗ C2Þ become advantageous
over the classical two-2-coin states Cð2Þ in playing the
Gð3Þ game whenever p > 1=4, with maximally entangled
states yielding the highest payoff [32].
Randomness-free test of nonclassicality.—A POVM

represents the most general quantum measurement. A

POVM is a collection of positive semidefinite operators
feigki¼1, with

P
i ei ¼ Id, where Id is the identity

operator acting on the Hilbert space Cd associated with
the system [33,44]. Projective measurements are special
cases, where the coefficients ei correspond to mutually
orthogonal projectors πi. For a qubit, such a measurement
can have only two outcomes: {πi ≔ jψ iihψ ijjhψ ijψ ji ¼ δij
for i; j ¼ 0; 1}. A k-outcome POVM feigki¼1 will be called
projective simulable if the outcome probabilities of the
POVM elements can be obtained by coarse graining the
outcome probabilities of some d-outcome projective meas-
urement for any d < k, i.e., ∀ i∈ ½1; k�, ei ¼

P
j Pijπj,

with fπjgj∈ ½1;d� being a d-outcome projective measure-
ment and fPijgi denoting probability distributions. For
instance, the unsharp qubit measurement σn̂ðλÞ≡ f1

2
ðI2 �

λn̂:σÞjλ∈ ð0; 1Þg can be simulated through the projective
measurement σn̂ ≡ f1

2
ðI2 � n̂:σÞg, since 1

2
ðI2 � λn̂:σÞ ¼

½ð1þ λÞ=4�ðI2 � n̂:σÞ þ ½ð1 − λÞ=4�ðI2 ∓ n̂:σÞ [34,45].
Not all POVMs are projective simulable and such mea-
surements are known to be useful for a number of
information-theoretic tasks [46–50]. Our game Gð3Þ pro-
vides a semi-device-independent certification of such qubit
measurements. Denoting the set of all qubit projective
simulable measurements as PSð2Þ, the result is formally
stated as the following proposition.
Proposition 2.—The maximum payoff RPSð2Þ

max ð3Þ of the
game Gð3Þ, achievable when the players are restricted to
perform measurement from the set PSð2Þ, is upper bounded
by RCð2Þ

max ð3Þ.
The claim of Proposition 2 follows from the fact that

given dimension d of the local subsystems, the joint
outcome probabilities obtained from any arbitrary quantum
state and projective measurement are the diagonal elements
of the density matrix (the state) when written in the same
basis as the projective measurement. Thus, the same
statistics can also be obtained from a classically correlated
(diagonal) state and measurement on the computational
basis.
A payoff higher than the maximum classical payoff,

therefore, certifies that the qubit measurements performed
by the players are not projective simulable [51]. We
highlight that this certification technique is semi–device
independent, with the experimenter requiring only the
knowledge of the local dimension (in this case d ¼ 2) of
the state shared between parties. As shown in [52],
certification of POVM is possible even in a device-
independent manner. However, such a device-independent
certification requires violation of a suitably designed Bell-
type inequality and hence requires each of the parties
involved in the Bell test to randomly perform incompatible
measurements on their part of the shared system. Note that
the technique of [52] is a detection of nonprojective
measurement only if subsystem dimension d ¼ 2, which
is further guaranteed by a violation of Clauser, Horne,
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Shimony, Holt (CHSH)inequality. In contrast, our semi-
device-independent scheme requires a single measurement
device for each of the parties, getting rid of the seed
randomness in inputs to the measurement devices.
Experimental results.—The quantum coin used in the

experiment is a pair of photons entangled in their transverse
spatial modes produced via degenerate spontaneous para-
metric down-conversion (SPDC) [42]. We show our exper-
imental schematic in Fig. 2 (see Appendix E in [41]). We
implement each element ei of the trine POVM of Eq. (2) by
programming an appropriate hologram onto the spatial
light modulators (SLMs E-Series, Meadowlark Optics).
The photons reflected from the SLM are coupled to single-
mode fibers via lenses L5 and L6. The single-mode fibers
are then connected to superconducting nanowire single-
photon detectors (superconducting nanowire single-photon
detector, Opus One, Quantum Opus). The probability of a
party going to a particular restaurant is proportional to the
probability of the outcomes of the POVM which can then
be obtained from photon counts. To get the joint proba-
bility, we record the coincidence count (Cij) between
Alice’s ith and Bob’s jth measurement outcome. This is
done via a time-tagging module (TT20, Swabian
Instruments) by integrating for 3600 s per data point.
We normalize the coincidence counts to evaluate the joint
probability PðijÞ for Alice and Bob going to the ith and jth
restaurant, i.e., PðijÞ ¼ Cij=

P
i;j Cij and evaluate the

payoff of Eq. (3).

The entangled photons produced by SPDC are in the
state jψþi, which transforms to the jψ−i state when a σz
rotation is applied to one of the photons. Alternatively, we
program the hologram for measuring σzeiσz for one of the
photons, where ei is a POVM element as defined in Eq. (2).
In the same manner, for the noisy case where the quantum
coin is in the noisy state of Eq. (1), instead of generating
Wp, we add the noise to the measurements. The state Wp

signifies that one of the subsystems of the singlet state jψ−i
undergoes a depolarizing channel of strength p, i.e., the
state remains unchanged with a probability ð1þ 3pÞ=4 or
undergoes any of the three Pauli rotations, each with a
probability ð1 − pÞ=4. In our experiment, we introduce this
depolarizing channel in the measurement settings by
implementing the POVM element ei affected by the noise.
This can be done by measuring feig with a probability
of ð1þ 3pÞ=4 and measuring fσjeiσjg with a probability
of ð1 − pÞ=4, where fσjg represent the Pauli operations.
Experimentally, we implement this noisy POVM by per-
forming a weighted time average on the relevant measure-
ments. For a total acquisition time of T, we measure feig
for a time duration of Tð1þ 3pÞ=4 and measure fσjeiσjg
for a time duration of Tð1 − pÞ=4 each. Thus, the temporal
degree of freedom is used as pointers for the Kraus-
operators of the depolarizing channel, and time averaging
erases this pointer information leading to a statistical
mixture of the Kraus operators [43].
Results obtained in the experiment are depicted in Fig. 3.

The payoffs from the probabilities obtained from our
experiment are all above the classical limit of 0.125 (dashed
green line) for p > 0.6, with the highest value being
0.150� 0.003 obtained for the noiseless case. The experi-
mental payoffs as a function of the noise (denoted by the
depolarization strength p) are given by the blue dots. The
ideal payoffs are given by the dash-dotted orange line (i.e.,
if we have a perfect maximally entangled state for the
correlated coins and perfect POVMs). The discrepancies

pump 

L2 
LP 

BS 

L1

L3 L4

L5

L6

SLM1

SLM2

CC

LP

LP

FIG. 2. Experimental setup. A 405-nm pump laser (pump) goes
through a nonlinear crystal (BBO) producing pairs of entangled
photons at 810 nm. A long-pass filter (LP) separates the pump
from the single photons, which are then split probabilistically by
a 50=50 beam splitter (BS) between the signal and idler arms
representing Alice’s and Bob’s shares. The combination of the
spatial light modulators (SLM1 and SLM2), single mode fibers
(yellow curves), and single photon detectors (not shown) corre-
spond to measurements of the transverse mode of the single
photons. The output of the single photon detectors is fed to a
coincidence circuit (CC) to record the correlations. Lenses (Ls)
are placed along the optical path to optimize mode matching.

Pa
yo

ff

P

0.12

0.13

0.14

0.15
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0.5 0.6 0.7 0.8 0.9 1

FIG. 3. Payoff of classical optimum strategy vs quantum
strategy. The optimal classical payoff of 0.125 is shown as the
dashed green line. Ideal quantum payoff following Eq. (3) is
plotted in a dash-dotted orange line. Theoretically expected
payoffs considering the imperfect entangled state are shown in
the solid purple line. Payoffs obtained in experiments are shown
in blue dots (along with error bars) and they are all above the
classical limit for p > 0.6.
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between the experiment and the ideal case can be accounted
for by our imperfect entangled state. The purple solid line is
the expected payoff given the entangled state that we
obtained via quantum state tomography using an over-
complete set of 36 measurements (97.0% fidelity to jψþi
and purity of 95.2%). Nevertheless, our experiment
firmly establishes a quantum advantage in correlated coin
tossing even with a significant amount of noise. Apart
from establishing the advantage in generating shared
randomness our experiment also has another interesting
implication as it constitutes a semi-device-independent
certification of nonprojective measurement.
Discussions.—Tests of the quantum nature of physical

systems are complicated by the requirement of randomness
in the inputs to such tests. For example, the true random-
ness that quantum systems are known to exhibit can only be
certified in a device-independent manner using Bell’s
theorem [53], which in turn needs true randomness (how-
ever small) in the inputs [54]—at least qualitatively the
argument is circular. The quantum advantage for shared
randomness processing that we experimentally demonstrate
in this Letter is important as it provides a way to test
nonclassical correlations without the need for true random-
ness—the only test of this kind. Our method certifying both
nonclassical correlations and generalized measurements is
semi–device independent, requiring only knowledge of the
dimensionality of the subsystem. We show that a two-qubit
system prepared in a maximally entangled state leads to a
higher payoff in our two-party game by yielding some
desired correlated coin state, which is impossible to obtain
from any two two-level correlated classical coins. In
contrast to the advantage in randomness processing dem-
onstrated in [55,56] which involves the probability distri-
bution of one random variable, our work focuses on a new
kind of quantum advantage in generating shared random-
ness between two distant parties, involving two random
variables and their joint probability distributions. This latter
quantum advantage will find use in distributed computa-
tional tasks, as in the example of the game we show here.
Our work sets the stage for further studies of quantum
advantage in multiparty shared randomness processing for
qubits or even higher-dimensional systems. Given that
randomness processing is an important computational
primitive, we envision our work will be useful for infor-
mation processing in quantum networks.
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