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Biological cells encode information about their environment through biochemical signaling networks
that control their internal state and response. This information is often encoded in the dynamical patterns of
the signaling molecules, rather than just their instantaneous concentrations. Here, we analytically calculate
the information contained in these dynamics for a number of paradigmatic cases in the linear regime, for
both static and time-dependent input signals. When considering oscillatory output dynamics, we report on
the emergence of synergy between successive measurements, meaning that the joint information in two
measurements exceeds the sum of the individual information. We extend our analysis numerically beyond
the scope of linear input encoding to reveal synergetic effects in the cases of frequency or damping
modulation, both of which are relevant to classical biochemical signaling systems.
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To react and adapt to varying internal and external
conditions, cells use networks of signaling proteins to
convey and process information. Recent experiments have
shown that these networks often show complex dynamical
behavior, such as relaxation to a steady state, pulses,
oscillations, or bistable switches [1-3]. Given a specific
regulatory network topology, different stimuli can pro-
duce distinct dynamical responses by messenger mole-
cules. For example, the transcription factor nuclear factor
kappa-B (NF-xB) exhibits damped oscillations in cells
stimulated with tumor necrosis factor-a (TNFa) [4,5]
whereas stimulation with bacterial lipopolysaccharide
(LPS) leads to a single, prolonged wave [5]. These distinct
responses help to explain how NF-«B can be involved in
such diverse processes as inflammatory response, cell
differentiation, cell proliferation, apoptosis, and more
[4,6]. This has led to the hypothesis that cells use the
temporal dynamics of signaling molecules to transmit
information about both identity and intensity of stimuli
[1,2].

Information theory has been a useful tool for quantifying
the information flow in biochemical networks [7-10].
While its application is often restricted to static measure-
ments of the output signal, recent experimental studies have
used information theory to quantify the reliability of signal
transmission in biochemical networks by estimating the
mutual information (MI) between input stimuli and the
dynamical responses of signaling molecules such as NF-xB
[9,11,12], extracellular signal-regulated kinase (ERK)
[11,13], calcium ions (Ca?") [3,11], or nuclear transloca-
tion of transcription factors [14]. These results indicate that
information transmission is increased when considering the
temporal dynamics as compared to a static scenario.
Concomitantly, progress has been made in calculating
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analytically the mutual information between input stimuli
and dynamical responses for time traces of infinite lengths
in simple linearized models of biochemical signaling
[15,16]. However, computations of information for trajec-
tories of finite lengths have mostly been limited to
numerical investigation [17,18] (sometimes aided by ana-
lytical approximations [19]), despite their relevance for
cells that make quick decisions in response to external cues.
Here we develop a framework for computing analytically
the mutual information between the input and the time trace
of the output signal, using a linear approximation. Focusing
on the onset of a constant input, we demonstrate the
existence of regimes in which information transmission
is synergetic, i.e., the information contained in two time
points jointly is larger than the sum of the information
contained in the individual time points.

We consider a biochemical network with one input
species X and one output species Y [Fig. 1(a)]. Our goal
is to calculate the mutual information between a time
trace of the input concentration, denoted by vector
X = (xt/1 ,....Xxy ), and a set of measurements of the output
concentrationy = (y,,....y, ): 1(x;y) = [dxdyp(x.y) x
log p(x,y)/p(x)p(y) [Fig. 1(b)].

In general, changes in the output species Y are deter-
mined by the history of x and y themselves. We start by
assuming that this dependency is instantaneous, with no
delays, so that increments of y happen with a rate depend-
ing on x, and y, only (we will relax that assumption later).
We also assume y > 1, so that we can use the small-noise
approximation and describe the evolution of y through the
stochastic differential equation:

Ve = (X0 y:) + V/2D(x, y)m, (1)
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FIG. 1. Calculating mutual information in time traces. (a) We
consider an input signal, either static or dynamic, that is trans-
mitted through a biochemical network and thus produces a time-
dependent output signal whose dynamic patterns may encode
information about the input. (b) To evaluate the information
transmission, we sample the input-output trajectories at a given
number of time points and compute the mutual information. In
certain cases this is possible analytically; otherwise numerical
estimators can be used.

where f is an arbitrary regulation function that subsumes
all the details of the regulation network between Y and X,
and 7, a unitary Gaussian white noise. Linearizing these
dynamics around (x*,y*), we can write

).’t:T_l(x_yt)‘F\/Ent’ (2)

where x and y were shifted and rescaled without losing
generality so that (x*,y*) = (0,0), and 9, f = —0,f.

We start by considering the situation in which the input
changes from 0 to a value X ~N(0,0,) at t = 0, corre-
sponding to the sudden activation of the signaling pathway,
e.g., due to some environmental change. Equation (2)
may be integrated exactly, so that y, conditioned on x is
normally distributed:

= x(1 = e™/)P2
2Dz(1 — e72/7)

(3)
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where we have assumed y(0) =0. Since x is also
normally distributed, (x,y) is distributed as a multivariate
Gaussian, and all mutual information values may be
calculated exactly (see SM [20]). The information
I(X;Y, ) carried by a single measurement of y at time ¢,
can be written as a function of the signal-to-noise (SNR)
ratio S(X;Y, ) (SM [20]):

1
I:Elog(l +5), (4)
02 1— e—tl/‘r
XY, )=
S( 2 tl) DTl +e_tl/-L- (5)

Typically, I(X; Y, ) is reported in the #; — oo limit, where it
is maximal, yet cells can rarely wait that long for a readout.

However, a cell is not limited to one measurement of y: it
can make multiple measurements, or exploit the informa-
tion contained in the whole output trajectory.

To calculate the mutual information between a static input
X and an interval of the output trajectory y = {y, }, [, 1, +7)

we use Bayes’s law to write the posterior probability of x
given the history of y as

p(xX)p(y,, [x)

p(y) H PYsalyex).  (6)

t=t,,t,+6t,...

p(xly) =

The logarithm of each term of this product is quadratic in x,
meaning that the posterior is Gaussian. Collecting the terms
in x2 and taking the 6 — O limit gives us the inverse of the
posterior variance Var(X|y), from which we deduce the
mutual information 7(X; Y) contained in the entire trajectory
as Eq. (4) with

or - e /T &2T
" Drl+e /T 2D

S(X;Y) (7)
This SNR is the sum of the SNR given by a single
measurement [Eq. (5)], and that provided by an effective
number 7'/27 of additional independent measurements that
the trace provides. As usual when combining several
measurements, the SNR grows linearly and the MI logarith-
mically according to a law of diminishing returns, meaning
that these measurements are redundant, making synergy
between them impossible with these memoryless dynamics.

The model of Eq. (2) cannot describe oscillatory behav-
ior, which is observed in several well-studied systems such
as the above-mentioned NF-«xB, ERK, and CaZ*, but also
other transcription factors such as p53 [23,24], Crz1 [25] or
Msn2 [26,27]. To account for this behaviour, we can
consider linearized second-order dynamics, which take
the form of an underdamped oscillator under external
forcing:

V= _VYz_w%(YI_x) +yVv2Dy,, (8)

where y is the damping coefficient, ®j =y/7, and

Q = \/w} — y*/4 the natural frequency of the oscillator.
Model (2) corresponds to the overdamped limit y — oo.

Using the same approach as above (see SM [20]), we can
calculate /(X;Y, ) as Eq. (4) with

021 — e77"1/%(cos Qt; + 55 sin Q1))
Var(Y, |X) ’

S(X;Yy,) = ©)

with Var(Y,|x) = (Dy/4Q%0})[4Q%(1 — e77") + y?e 77" x
(cos2Qr — 1) — 2yQsin 2Q¢]. Unlike in the overdamped
case, the MI does not necessarily increase with #;, but

instead is itself subject to oscillations, and is maximal for
1, = /Q [Fig. 2(b)].
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We can next calculate the mutual information between x
and the trajectory of y by introducing the auxiliary variable
z = y to make the system Markovian. I(X;Y) =I1(X;Y,Z)
is given by Eq. (4) with

o3[l — e~ % (cos Q1 + 35 Sin Q)

S(X;Y) =
®&Y) Var(v, %)
clwge™ sin2£it1 a)?);)% I (10)
Var(Z, |X)Q* " 22D
with  Var(Z,|x) = (Dy/4Q*)[4Q%(1 — e77") + y?e 7" x

(cos2Qr — 1) + 2yQsin 2Q¢]. Note that the T — O limit
corresponds to the information given by an instantaneous
measurement of Y and its derivative Z, which gives more
information than Y alone [Eq. (9)].

The scaling with observation time 7 in Eq. (10) has the
same property of diminishing return as the overdamped
case. However, synergy can emerge if we consider two
measurements y, and y, . The corresponding mutual infor-
mation /(X;Y, .Y, ) may be calculated analytically using
the Markovian propagator p(y,,|y;,.z,.x) (see SM [20]).
At steady state (1; — o), its simplifies to Eq. (4) with

_ wdo? 031 — e (cos QAL + 5 sin QAT))?

S - ’
yD Var[Y(At)|X] + 7% e 7AsinQAt

(11)

with At = t, — t;, which is plotted in Fig. 2(a). We observe
that the joint information is maximal when the second
measurement is done Ar = z/Q after the first, i.e., at
opposite phase. The resting position of the oscillator is
then approximately the average of the two measurements,
irrespective of the phase of the first measurement. In that
case, the two measurements are synergistic, Synergy =
I1X;(Y,.Y,)] - 1(X;Y,)—I(X;Y,) > 0. They provide
more information together than the sum of each, which
are confounded by lack of phase information. Figure 2(b)
shows the more realistic case of a first measurement in
finite time, and optimal delay At = z/€, confirming that
synergy is a generic outcome. Optimal readout strategies
are usually assumed to maximize information. The corre-
sponding optimal measurement times are then 7] < 7/Q
and 75 — ] = n/Q, versus t* = x/Q for a single measure-
ment. While in this case maximizing information and
synergy are different, the most informative measurements
are synergistic. The phase diagram of the steady-state
synergy as a function of the dimensionless parameters of
the dynamics, /7, and the steady-state SNR = wjo?/Dy
[Fig. 2(c)] shows that synergy emerges when damping is
weak and noise is large, which is the regime in which
resonant effects are strong.

We can apply our formulas to experimental measure-
ments of the response of the ERK pathway activated by an
optogenetic actuator [13] in the oscillatory regime. From
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FIG. 2. Synergy in information transmission between succes-
sive measurements. (a) Information contained jointly in two
successive measurements as a function of the delay Az between
them, for the oscillatory dynamics of Eq. (8) at steady state.
Synergy is observed when I(X; (Y, .Y, )) > I(X;Y,)+1(X;Y,,).
(b) Information of two measurements as a function of the time of
the first measurement, f;, for fixed delay At =1, —t,= n/Q.
(c) Phase diagram of the synergy in steady state as a function of
SNR = w?0?/Dy and wy/y, with At = t, — t; = n/w. Dashed
line shows the range of experimental values estimated from
Ref. [13] where ERK is activated by optogenetics. All data are for
62=1,y=1,and in (a) and (b), D =5, w, = 2.

Fig. 2(e) of Ref. [13] we estimate Q! ~ 1.43 min and
y~! = 4.5 min, so that wy/y ~3.2, and Var(Y,_.|X)~
0.013 in the experiment’s arbitrary units of normalized
fluorescence. The output variance depends on the dynamic
range of inputs, but is lower than 0.06 in those units, giving
a SNR varying between 0 and =4.5. In this experimental
regime, the total information of two time points may be as
large as 2.6 bits, with synergy appearing for SNR < 3.3
[Fig. 2(c), dashed line]. This suggests that synergy may be
relevant in the physiological regime of those experiments,
and could be exploited by cells in downstream signaling.

So far we have considered the case of an input affecting
the resting position of the output y. However, other
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encodings are also common in biological systems, such as
frequency modulation, proposed for Msn2 [27], Crzl [25],
and Ca’* [28,29], or damping modulation, similar to the
distinct dynamical responses of NF-«B when stimulated
with TNFa or LPS [5]. These encodings are no longer
Gaussian, so we must turn to numerical methods to estimate
mutual information. We first generate solutions to Eq. (8)
for a large number (N ~ 10%) of sampled inputs. We then
either calculate the empirical mean of —log[P(x|y)/P(x)]
using the Markovian expression [Eq. (6)], or use the k-
nearest-neighbor (knn) estimators developed by Kraskov,
Stogbauer, and Grassberger (KSG) [30], and Selimkhanov
et al. [11]. While these estimators are very flexible and
widely used, they have been criticized for not taking
information encoded in the temporal order of successive
measurements into account [12]. We benchmark the
estimators using the exact results derived in the previous
section (see SM [20] for more details).

We first study frequency modulation by considering an
underdamped system [Eq. (8)] with null resting position,
and two equiprobable input frequencies {wy ;,®(,}, cor-
responding to two discrete stimuli that the cell is trying to
distinguish, and which control the response frequency. We
initialize the system either at a random value drawn from
the steady state, or from y(0) = 0, and compute the MI in
the relaxation dynamics, i.e., we ask how well the two
frequencies can be distinguished. When starting from a
random value, a single measurement should contain very
little information, but two measurements should together
allow for a good estimate of @, so we expect to find
synergy. These predictions are confirmed by Fig. 3(a),
which shows that information carried by several measure-
ments is larger than the sum of individual ones (global
synergy, /., > I; + --- 4+ 1,,). In the case of a fixed initial
condition, one measurement can already distinguish
frequencies since the initial phase is fixed, unless the noise
has had time to randomize the phase.

Next, we consider damping modulation by computing
the mutual information between an output evolving accord-
ing to Eq. (8) with null resting position and equiprobable
binary input damping coefficients {y,y,}, chosen on both
sides of the critical damping transition y; > y. = 2@g > 75.
Once again, synergy is observed, especially when the initial
condition is drawn from the steady state [Fig. 3(b)]. Since
all other parameters are equal, single measurements give
almost no information on whether the dynamics are over-
damped or underdamped.

In this Letter we have derived analytical and numerical
solutions for the information carried by an output signal in
response to a constant input, which corresponds to the
typical experiments of Refs. [3,11,12,14]. In contrast,
previous theoretical work on information from temporal
trajectories has focused on the case of Gaussian fluctua-
ting inputs at steady state [15,16], where information can
be decomposed in the frequency domain [31,32]. For
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FIG. 3. Frequency and damping modulation. Information con-

tained in n successive equidistant measurements, with fixed
(y(0) = 0) or random (steady-state) initial conditions. The binary
input consists of (a) two different frequencies in the underdamped
regime; and (b) two different damping coefficients in the over-
damped and underdamped regimes respectively. Solid curves
show the joint MI of n measurements, dashed curves the MI of
the nth measurement alone, and the dotted curves the sum of the
individual MIs up to that point. Synergy is observed when the
solid line is above the dotted line. Note that since the input is
binary, all MI <1 bit. The curves were obtained using 7 = 8,
D=4,062=1,and @ wy=2, y; =1, 7, =6, At = 7/Q,
(b) Y = 1, @y = 2, 0)02 = 3, At = 277:/(91 + Qz)

completeness, here we present exact results for a fluctuat-
ing input x [following an Ornstein-Uhlenbeck process x, =
—x;/7¢ + /2D, (1) with (n,(t)n,.(¢') = (¢t — ¢')] but with
a finite observation window (0, T) at steady state. When y
responds to x as before, Eqs. (2) or (8), the joint dis-
tributions of X = (x;),e(o.r) and (¥, 2) = (- 21)re (0,7) are
multivariate Gaussians whose covariance matrices have a
tridiagonal structure. After calculating their determinants
we obtain exact but lengthy expressions for /(X; Y), which
are given in SM [20]. Taking the large time limit gives back
the classical information rate of [16]

. IXY) 1 D, 72
lim —— = — 1 -1 12
I 21, ( = ) (12)

T—oo T

for both the overdamped and underdamped cases.
Information synergy had been previously discussed in
neuroscience as a property of groups of neurons [33], or
between spikes of the same neuron [34]. Our models
demonstrate that synergy could also be relevant in cellular
signaling in the physiological regime when the response
function is dynamic and nonlinear, allowing cells to extract
more information from stimuli and to make faster deci-
sions. Potential candidates for synergetic signaling include
Msn2, Crzl, or Ca?™, which have been found to use
frequency modulation to encode information, and NF-xB
in response to TNFa and LPS, which can show both
overdamped and underdamped dynamics depending on
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the stimulus [5]. Frequency modulation has also been
hypothesized to be used in some pathways to encode
information [27-29]. However, it is not clear whether such
synergistic signaling designs are optimal or evolutionary
adaptive, and how the nature and statistics of the input
modulate synergy. Another outcome of our work is exact
solutions for the information content in finite trajectories,
which we used to benchmark the performance of mutual
information estimators that are frequently used in exper-
imental research. Our results provide analytical foundations
for a better understanding of dynamical information in
biochemical signaling, and suggest new directions for both
experimental and theoretical research.

We thank M. Kramar and Huy Tran for fruitful
discussions.
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