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The concept of topological defects is universal. In condensed matter, it applies to disclinations,
dislocations, or vortices that are fingerprints of symmetry breaking during phase transitions. Using as a
generic example the tangles of dislocations, we introduce the concept of topological metadefects, i.e.,
defects made of defects. We show that in cholesterics, dextrogyre and levogyre primary tangles are
generated through the D2 → C2 symmetry breaking from the coplanar dislocation pair called Lehmann
cluster submitted to a high enough tensile strain. The primary tangles can be wound up individually into
double helices. They can also annihilate in pairs or associate into tangles of higher orders following simple
algebraic rules.
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Topological defects such as vortices, dislocations, or
disclinations are fingerprints of order parameters resulting
from broken symmetries [1,2]. Here, we introduce the new
concept of topological defects of a higher order, which we
propose to call “metadefects,” using as a generic example
tangles of dislocations in cholesterics.
Today, in the light of experiments reported below, we can

say that such tangles certainly occur frequently in the well-
known textures of cholesteric liquid crystals called oily
streaks, which are networks of clusters of dislocations but
formerly, as far as we know, they have not been recognized
and discussed explicitly. For the sake of simplicity, we
present here the first evidence of tangles produced in a
controlled manner from the so-called Lehmann clusters
[3–6]. This Letter is organized as follows: (1) first, we
explain what the Lehmann cluster is and how it can be
obtained by a collision of two parallel dislocations with
opposite Burgers vectors b ¼ po and b ¼ −po (po is the
full 2π pitch of the cholesteric helix); (2) subsequently, we
introduce the overlapping instability of the Lehmann
cluster submitted to a high enough tensile strain and
explain how the corresponding D2 → C2 symmetry break-
ing produces one or more primary tangles; (3) next, we
show that the primary tangles resulting from the over-
lapping instability can be wound up into dextrogyre or
levogyre double helices [7–10], and (4) finally, we point out

that several textures in cholesterics observed or discussed
formerly [6,11–13] can also be interpreted as topological
metadefects.
Our experiments were made with cholesteric droplets

confined by capillarity between two crossed cylindricalmica
sheets [see Fig. 1(a) and also Ref. [12]). The radius Rm of
curvature of mica sheets is of the order of 150 mm and the
initial minimal distance hmin of the gap is of the order of 10
cholesteric pitches po ≈ 18 μm. When the radius rd of
droplets is of the order of 1 mm, the thickness of the gap,
which varies with the distance r from the center as

hðrÞ ¼ hmin þ r2=ð2RmÞ; ð1Þ
increases only by 3 μm from the center to the meniscus
(r ¼ rd), which is much less than the pitch po. For this
reason, in experiments discussed below, variation of the
thickness hðrÞ with r can be neglected.
The series of four pictures in Figs. 1(d)–1(g) shows

evolution of two dislocation loops with N þ 1 cholesteric
pitches nucleated previously by a tensile strain in a dro-
plet containing N ¼ 8 full cholesteric pitches [point 1 in
Fig. 2(a)]. Upon the action of the Peach-Koehler force

F̃PK ¼ FPK
2K22π
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corresponding to h̃ ¼ h=po ¼ 9 [point 2 in Fig. 2(a)], the
two dislocation loops expand and collide (K22 is the Frank-
Oseen coefficient for the twist distortion). At first sight, one
could expect that the collision of two dislocations should
result in their coalescence (or rewiring). Surprisingly, this is
not the case in the experiment represented in Figs. 1(e)
and 1(g), where the collision of the two loops results in the
association of dislocations into the Lehmann cluster
(see the video “Lehmann cluster” in Supplemental
Material [14]).
The coalescence of the colliding coplanar loops is

avoided because as it was pointed out by Smalyukh and
Lavrentovich [4] the Lehmann cluster is the most stable
state of a pair of dislocations with the opposite Burgers
vectors [see Fig. 2(f)]; its energy per unit length (tension)
TLC is smaller than the total energy 2T of the two
dislocations before their association. This is obvious in
the experiment represented in Fig. 2(b) where the two
dislocations connected to the Lehmann cluster form the
angle α ¼ 80°. From the condition of the equilibrium of
tensions TLC ¼ 2T cosðα=2Þ, one obtains TLC=ð2TÞ ¼
0.77. (Warning: The cholesteric phase is continuous; the
dotted lines in Figs. 2(f), 2(j), and 2(k) delimit quasilayers
in which molecules rotate by 2π).
After its generation, the Lehmann cluster is submitted

to a higher tensile strain [h̃ ¼ h=po ≈ 10.3, point 3 in
Fig. 2(a)] triggering the overlapping instability that we will
discuss in more detail below. Here, the overlapping

instability splits extremities of the Lehmann cluster into
pairs of dislocations delimiting triangular fields labeled
“N þ 2 overlap” shown in Figs. 2(b) and 2(h). Sub-
sequently, the splitting of the Lehmann cluster progresses
until the vertices A and B of the triangular fields collide at
the center t of the droplet.
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FIG. 2. Generation of one dextrogyre tangle of dislocations
from the Lehmann cluster in a droplet with N ¼ 8 cholesteric
pitches. (a) Variation of the Peach-Koehler force with the thick-
ness of the gap. (b)–(e) First overlapping instability occurring at
h̃ ¼ 10.3. (f) Cross section of the droplet with the Lehmann
cluster. (g)–(i) Top views of the droplet during the generation of
the tangle. (j),(k) Cross sections of the two types of N þ 2
overlaps (0.87% CB15=5CB, N ¼ 8, po ¼ 18 μm).

(c)(b)(a)

(d) (e) (f) (g)

FIG. 1. Generation of the Lehmann cluster. (a) Geometry of the
experiment: a cholesteric droplet confined by capillarity between
crossed cylindrical mica sheets (for a better visual readability, the
thickness hmin of the gap is exaggerated). (b) Expanding coplanar
dislocation loops. (c) Lehmann cluster resulting from the colli-
sion of the expanding loops. (d)–(g) Generation of the Lehmann
cluster by collision of the expanding coplanar dislocation loops
[0.87% CB15=5CB, N ¼ 8, po ¼ 18 μm, hmin ¼ 9po, point 2 in
Fig. 2(a)].

PHYSICAL REVIEW LETTERS 131, 128101 (2023)

128101-2



One could think that this collision should result in
coalescence of the two triangular fields. Surprisingly, once
again, this is not the case: in Figs. 2(c) and 2(i) the vertices
A and B remain in contact in the center t while the
triangular fields continue to grow thanks to the motion
of the delimiting dislocations.
This behavior is the fingerprint of the metadefect—the

dextrogyre tangle of dislocations—that appears as a black
dot in Figs. 2(d) and 2(e).
To grasp better geometrical aspects of the generation of

this tangle we show in Figs. 2(g)–2(i) top views of the
droplet and in Figs. 2(j) and 2(k) cross sections of the
droplet along the dotted lines defined in Fig. 2(h). If the two
cross sections were identical—for example, such as the one
in Fig. 2(j)—the dislocation drawn in red would be located
above the blue one everywhere. In this situation the red and
blue dislocations would be free to expand until they would
reach the meniscus of the cholesteric droplet. Therefore, the
necessary condition for the generation of the tangle is that
the two cross sections must be different: in Fig. 2(k), the
dislocation drawn in red is located below the blue one.
These considerations lead us to examine the symmetry

aspects of the generation of tangles using another example
represented in Fig. 3 in which not one but four tangles are
generated simultaneously (see the video “Overlapping
instability” in the Supplemental Material [14]). Let us
remark first that the Lehmann cluster has the D2 symmetry
containing three mutually orthogonal twofold axes C2x,
C2y, and C2z [see Fig. 3(b)]. Figures 3(b)–3(d) show that
the overlapping instability of the Lehmann cluster involv-
ing 3D motions of dislocations breaks its D2 symmetry.
After the D2 → C2 symmetry breaking, only the twofold
axis C2x is preserved. The four tangles of dislocations well
visible in Fig. 3(a) can now be seen as topological defects
characteristic of the D2 → C2 symmetry breaking.
Let us discuss their genesis in more detail. In Fig. 3(b),

the coplanar dislocation pair is divided by thought into
three segments: AB, BC, and CD. The red and blue arrows
in Fig. 3(c) indicate that in the AB and CD segments, the
blue dislocation line passes below the red one while in the
BC segment, it passes above the red one. The new
configuration of dislocations in segments AB and CD is
related to the one in BC by the broken symmetry elements
C2y and C2z. Reconnection of the adjacent red (or blue)
segments restores the continuity of the dislocation lines and
generates the dextrogyre and levogyre tangles located
alternatively in points A, B, C, and D [see Fig. 3(d)].
In experiments described above, the generation of the

Lehmann cluster and its subsequent overlapping instability
were driven by the Peach-Koehler forces acting on the red
and blue segments of dislocations. The expression of the
Peach-Koehler force in Eq. (2) depends on two dimension-
less parameters: (1) the number N of cholesteric pitches in
the confined droplet containing the dislocation loops, and
(2) the reduced thickness of the droplet h̃ ¼ h=po. For this

reason, for a given number N of the full cholesteric pitches
(N ¼ 8), the generation of the Lehmann cluster and the
subsequent generation of tangles was obtained by the
adequate variation of the droplet’s dimensionless thickness
represented in Fig. 2(a) as a trajectory passing through
points labeled from “1” to “3.” (1) At the beginning of our
experiments, two dislocation loops were present in the
droplet containingN ¼ 8 full cholesteric pitches [point 1 in
Fig. 2(a)]. (2) The thickness h̃ was then set to 9 [point 2 in
Fig. 2(a)], a value larger than 8.5, for which the Peach-
Koehler force is positive so that the two dislocation
converged, collided and the Lehmann cluster was formed
[see Fig. 1(c)]. (3) With the aim to trigger the overlapping
instability of the Lehmann cluster, h̃ must be set to a value

(b) (d)(c)

(a)

FIG. 3. Tensile strain-induced generation of the levogyre and
dextrogyre tangles (labeled “lt” and “dt”) by the overlapping
instability of the Lehmann cluster. (a) Temporal evolution as
observed under a microscope (0.87% mixture of CB15 in 5CB,
po ¼ 18 μm): (0 s) pair of coplanar dislocations associated
into the Lehmann cluster; (0–81 s) the overlapping instability.
(b)–(d) Schematic representation of the 3D motions of disloca-
tions that break the coplanar configuration of the Lehmann cluster
and lead to generation of the tangles. C2x, C2y, and C2z are the
twofold axes of the D2 symmetry group of the Lehmann cluster
shown in (b).
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larger than 9.5, because after the instability the dislocation
loops must continue their expansion in a droplet containing
now N ¼ 9 pitches [see the line labeled 9–10 in Fig. 2(a)].
In practice, to get out from the energy well of depth ΔT ¼
TLC − 2T of the Lehmann cluster (the lowest energy state
of a dislocation pair), the thickness was set to 10.3 [point 3
in Fig. 2(a)], a value larger than 9.5. By this means the
primary tangle of dislocations was generated.
When a solitary primary tangle is located in the center of

the droplet it is possible to wind it up into a double-helix
tangle by a further extension of the gap thickness (see the
videos “Double-helix tangle” and “Perspective view of the
double-helix tangle” in the Supplemental Material [14]).

As the first examplewe show in Figs. 4(a)–4(d) continuation
of the experiment from Figs. 2(b)–2(e). Here, the primary
tangle of dislocations obtained previously is submitted to the
Peach-Koehler forces corresponding to the thickness h̃ ¼
11.2 [point 4 in Fig. 2(a)] and the second overlapping
transition occurs as shown in Figs. 4(e)–4(h). Motion
of dislocations [delimiting fields with N þ 3 pitches in
Figs. 4(g) and 4(h)] around the center of the primary tangle
increases the height of the tangle by po.
In another experiment depicted in Fig. 5, the growth

of the thickness h̃ is monotonic. In these conditions
the sequence …collision → association in pairs →
overlapping instability → rotation of dislocation →
collision… occurs several times and in this manner the
primary tangle is wound up iteratively into a double helix of
a growing height. Let us stress that the staircaselike shape of
trajectories of dislocations in the spatiotemporal cross
section in Fig. 5(b) is due the thresholds that must be
overcome during the successive overlapping instabilities of
dislocation pairs. The perspective views in Figs. 5(e)–5(h)
simulate the winding process.
Our experiments opened several issues that deserve to be

discussed in future in more details. (1) Immunity against the
coalescence. Generation of the Lehmann cluster by the
collision of two coplanar dislocation loops remains to
be explained. It unveils a surprising immunity of copla-
nar dislocations against the coalescence (or rewiring).
(2)Overlapping instabilities. The strain threshold ðΔh̃=h̃Þcrit
necessary to get out from the potential well of the Lehmann
cluster of depth ΔT ¼ Tpair − 2T through the overlapping

(g) (h)

(e) (f)

(a) (b) (c) (d)

FIG. 4. Beginning of the winding of a double helix from the
primary tangle. (a)–(d) Second overlapping instability (of a
noncoplanar dislocations pair) occurring at h̃ ¼ 11.2 [points 4
in Fig. 2(a)]. (e)–(h) Structure of the cholesteric droplet during the
second overlapping instability.
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FIG. 5. Winding of a dextrogyre double-helix tangle driven by a
monotonic extension of the thickness h̃. (a) Observations in a
microscope (5.4% mixture of CB15 in 5CB, po ¼ 2.4 μm).
(b) Spatiotemporal cross section extracted from a video along
the octagonal dashed line defined in (a). Staircaselike trajectories
of dislocations in the spatiotemporal cross section are due to
the thresholds to overcome during the successive overlapping
instabilities. (c) Growth of the reduced thickness in time.
(d)–(h) Perspective view of the winding process.
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instability remains to be calculated. (3) Higher order
tangles. When the winding process starts from more com-
plex networks of dislocations pairs, containing several
primary tangles, higher order tangles made of 3,...,8
dislocations, can be wound up (see the video “Tangle
six dislocations” in the Supplemental Material [14]).
(4) Geometry of helical tangles. The difference in geom-
etries of the levogyre and dextrogyre double-helix tangles in
CB15=5CBmixtures remains to be explained. (5)Networks
of dislocation pairs. When several dislocation loops are
nucleated and expand simultaneously, their collisions lead to
formation of a foamlike polygonal network made of dis-
location pairs connected by triple nodes.Because of tensions
of dislocation pairs, this network evolves slowly like a foam.
A much more rapid and complex reconfiguration of this
network can be driven by a growing tensile strain. At the
beginning, pairs of dislocations forming the Lehmann
clusters may undergo the overlapping instability that gen-
erate primary tangles. In the subsequent evolution, the
primary tangles can annihilate in pairs or associate into
tangles of higher ranks (see below).
We would like to stress that other textures observed or

discussed formerly in cholesterics can be seen as topo-
logical metadefects. (1) Kink chain generation in Lehmann
clusters. Using optical tweezers and magnetic colloidal
particles submitted to a rotating magnetic field, Varney,
Jenness, and Smalyukh [6] generated a series of kinks in a
Lehmann cluster. The optical aspect of such a kink chain
shown in Fig. 8(f) of Ref. [6] is identical with that of an
obliquely stretched double-helix tangle observed in our
studies (to be discussed elsewhere). (2) Dislocations in
systems of twist-escaped disclination clusters. Using a
computer controlled laser beam, patterns of twist-generated
disclination clusters (cholesteric fingers) have been gen-
erated in thin cholesteric layers [11]. Dislocation in these
systems of equidistant linear parallel clusters can also be
seen as another type of metadefects, different from tangles.
(3) Knotted dislocations and disclinations. The possibility
of the occurrence of knotted dislocations generated in
cholesterics confined between crossed mica sheets has
been examined in Ref. [12]. So far, closed dislocation
loops, self-crossing several times, observed in experiments
were topologically equivalent to the unknot. However, if
the rewiring of some adequate crossings was possible (e.g.,
using heating by a laser beam), knots made of disloca-
tions could be created. Generation of knots made of defect
lines in nematics and their application in optics is exten-
sively discussed in the recent paper of Meng, Wu, and
Smalyukh [13].
Finally, let us stress from the most general mathematical

point of view, the association of the primary tangles obeys a
simple algebra involving their rank t ¼ n − 1 (where n is

the number of entangled dislocations) and their levogyre
and dextrogyre chiralities represented, respectively—for
example, by signs − and þ. Using this convention, the
annihilation of a pair primary tangles is written as 1−1¼0
while the operation 1þ 1þ 1 ¼ þ3 represents the asso-
ciation of three primary dextrogyre tangles into one dextro-
gyre tangle of rank t ¼ 3. It is also worthwhile to note
that, in 5CB=CB15 mixtures, the director field in planes
orthogonal to the double-helix levogyre and dextrogyre
tangles contains, respectively, þ4π and −4π disclina-
tions [8]. This fact is of interest for optical applications.

This work on dislocations in cholesteric was initiated by
the invitation of C. T. Imrie, R. D. Kamien, and O. D.
Lavrentovich for participation to the memorial issue of
Liquid Crystals Reviews in honor of Maurice Kleman. We
benefited from the technical assistance of V. Klein,
Y. Simon, J. Sanchez, S. Saranga, J. Saen, T. Chambon,
M. Bottineau, J. Vieira, and I. Nimaga. We are also grateful
to C. Goldmann for discussions and help.
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