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Topological bosonic excitations must, in contrast to their fermionic counterparts, appear at finite
energies. This is a key challenge for magnons, as it prevents straightforward excitation and detection of
topologically protected magnonic edge states and their use in magnonic devices. In this Letter, we show
that in a nonequilibrium state, in which the magnetization is pointing against the external magnetic field,
the topologically protected chiral edge states in a magnon Chern insulator can be lowered to zero frequency,
making them directly accessible by existing experimental techniques. We discuss the spin-orbit torque
required to stabilize this nonequilibrium state, and show explicitly using numerical Landau-Lifshitz-Gilbert
simulations that the edge states can be excited with a microwave field. Finally, we consider a propagating
spin wave spectroscopy experiment, and demonstrate that the edge states can be directly detected.
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Introduction.—Over the past decade, it has become clear
that the concepts of topological band theory cannot only
be applied to electrons [1,2], but also to a whole range of
other (quasi)particles, encompassing photons [3,4] and
collective bosonic modes in quantum condensed matter
systems like phonons [5], plasmons [6,7], and magnons [8].
Among the latter, topological magnon systems, such
as magnon Chern insulators [9–16], magnon spin Hall
insulators [17–19], magnon Dirac semimetals [20,21],
magnon Weyl semimetals [22,23], and higher-order topo-
logical magnon insulators [24–26] are especially of interest
because they couple to external magnetic fields providing
an exceptional handle for control. Arguably, the most
fundamental of these phases is the magnon Chern insulator,
which supports chiral edge states that could be used as
fault-tolerant spin-wave current splitters and interfero-
meters [11,27] and for highly efficient spin transport
robust against backscattering at moderate disorder [28,29].
Multiple magnetic materials have been predicted to be
magnon Chern insulators from their bulk band structure
obtained by inelastic neutron scattering experiments
[30–33]. However, the hallmark chiral edge states have
to date not been directly observed. Alternatively, as a direct
probe of bulk band topology Raman scattering has been
proposed [34].
This lack of evidence for chiral bosonic edge states is

strongly tied to the fundamental difference between fer-
mion topological insulators and their bosonic analogs.
Since bosonic collective excitations do not obey a particle
number conservation law, their mathematical description
relies on the Bogoliubov-de-Gennes formalism, which
comes with a doubled particle space. As a result, the

topologically protected edge states have to appear at finite
frequencies above the first bulk band [11,35,36]. For
magnon Chern insulators, this means the edge states have
energies set by the magnetic exchange energy scale, which
is typically meV [31,37]. The corresponding frequency is
in the THz range, which is beyond the reach of exper-
imental tools, such as Brillouin light scattering or micro-
wave excitation and detection.
In this Letter, we propose a method to lower the topo-

logically protected chiral edge states in magnon Chern
insulators to zero frequency, such that they are easily
accessible by microwave techniques. This is achieved by
considering magnon excitations on top of a uniform
magnetization that is pointing against the applied external
magnetic field, as opposed to considering excitations on top
of a magnetization parallel to the magnetic field, as shown
in Figs. 1(a) and 1(b). In such a nonequilibrium setup, the
magnon excitations decrease the energy of the system,
allowing us to tune the frequency of the edge modes to zero
frequency. Since the nonequilibrium state is energetically
unstable, it has to be rendered dynamically stable, which
is achieved by an appropriate spin-orbit torque. Using
numerical Landau-Lifshitz-Gilbert simulations we show
that the edge modes can be excited at low frequencies, and
are topologically protected against backscattering. Finally,
we consider a propagating spin-wave spectroscopy (PSWS)
experiment with two antennas, and demonstrate that the
edge modes can be directly detected at gigahertz frequen-
cies, even in the presence of disorder.
Model.—We consider a two-dimensional magnetic sys-

tem of localized spins Si with length S on two sublattices
(denoted A and B), subject to an external magnetic field H
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with strength H0 and orientated along the z axis, such that
H ¼ H�ẑ, where we have introduced H� ≡�H0. After
linearizing the spin HamiltonianH in fluctuations around a
uniform state we find a two-band spin-wave Hamiltonian.
We assume the spin-wave Hamiltonian to realize a magnon
Chern insulator, exhibiting topologically nontrivial magnon
bands, and topologically protected chiral edge states whose
dispersion runs across the bulk band gap. The edge states
therefore have a finite energy, which cannot be lower than
that of the first bulk band [11,35,36].
The central thesis of this work is that we can use a

nonequilibrium state with the magnetization pointing
against the external magnetic field to lower the edge states
down to zero frequency. We thus consider the state Si ¼ Sẑ,
whilst H ¼ H−ẑ. We refer to the case of H ¼ Hþ as the
equilibrium, and H ¼ H− as the nonequilibrium. The
nonequilibrium state is unstable and will thus relax to
the equilibrium state in the presence of dissipation—such
as Gilbert damping—with the magnetization parallel to the
applied magnetic field. A spin-orbit torque is therefore
necessary to render the energetically unstable situation
dynamically stable. Experimentally, this could be accom-
plished by interfacing the ferromagnetic insulator (FM)
with a heavy metal (HM), as indicated in Fig. 1(b), such

that the spin Hall effect generates a transverse spin current
in the HM, injecting spin into the FM [38].
The spin dynamics are governed by the semiclassical

Landau-Lifshitz-Gilbert (LLG) equation

∂tSi ¼ Si ×

�
−
∂H
∂Si

þ α

S
∂tSi þ

Js
S
Si × ẑ

�
; ð1Þ

where α is the Gilbert damping, and we allow for the
system to be driven by a spin-orbit torque, Js. We now
expand the LLG Eq. (1) in deviations m�

A=B;i ¼ ðSxA=B;i ∓
iSyA=B;iÞ=

ffiffiffiffiffiffi
2S

p
around the uniform state, SA=B;i ¼ Sẑ, where

m�
A=B;i refer to excitations for the equilibrium state,

H ¼ Hþ, and nonequilibrium state, H ¼ H−, on the sub-
latticesA=B. After introducing the Fourier transform of the
spin-wave operators, m�

A=B;i ¼
ffiffiffiffiffiffiffiffiffi
2=N

p P
k e

ik·Rim�
A=B;k, the

LLG Eq. (1) can be written as a Bogoliubov-de-Gennes
(BdG)-like equation in momentum space,

iðτ0 þ iατzÞ∂tΨ�
k ¼ ðτzH�

k þ iJsτ0ÞΨ�
k ; ð2Þ

where τη are the Pauli matrices in particle-hole space
and we have introduced the magnon state vector Ψ�

k ¼
ðm�

A;k; m
�
B;k;m

��
A;−k; m

��
B;−kÞT in particle-hole space.

We first determine the stability criterion for the non-
equilibrium state, which can be found by solving the
BdG-like Eq. (2) up to zeroth order in k and up to first
order in the dissipative terms, α and Js. We then find that
ω0;� ¼ H� − iðαH� − JsÞ. For stability, we require that
Im½ω0;�� < 0, which in equilibrium, where H ¼ Hþ > 0,
means that the system is stable in the absence of spin-orbit
torque. In nonequilibrium, where H ¼ H− < 0, we require
that Js ≥ αH and thus the nonequilibrium state can be
rendered dynamically stable with a sufficiently large spin-
orbit torque.
Although our general method is valid for any magnon

Chern insulator, we now explicitly consider the well-known
magnon Haldane model [14,15], the details of which we
review in the Supplemental Material [40]. In the magnon
Haldane model, the Dzyaloshinskii-Moriya interaction
(DMI) opens the topological gap.
In the absence of dissipation, α ¼ Js ¼ 0, we obtain two

sets of two spin-wave solutions to Eq. (2), as a result of the
particle-hole symmetry. However, this doubling is not a
physical effect and merely the result of the fact that we
represent the spin waves using complex scalar fields [43].
We can thus choose to only work with one branch of the
solutions, and we then obtain two bands with dispersion
relations

ω�
k;1¼H�þ3JSþjhkj; ω�

k;2¼H�þ3JS− jhkj; ð3Þ

where J is the exchange constant and hk comprises the
details of the magnon Haldane model [40]. We show this

FIG. 1. Strategy for generating zero-frequency chiral magnonic
edge states in a magnon Chern insulator FM, comparing the
equilibrium (a),(c),(e) with the nonequilibrium (b),(d),(f) situa-
tion, with the uniform magnetization (see arrows) and magnetic
field H� aligned parallel and antiparallel, respectively. In the
nonequilibrium case, the magnetization is stabilized by spin-orbit
torques originating from the adjacent HM layer. (c),(d) Bulk
magnon band structure with indicated Chern numbers, Ω1;2.
(e),(f) Magnon band structure of an armchair edge ribbon. The
colorscale of the eigenfrequencies indicates the edge localization,
and dashed lines denote the bulk band gap. In equilibrium,
Hþ=ðJSÞ ¼ 0.1, the edge states lie at high frequencies, but
they are lowered down to zero frequency in nonequilibrium,
H−=ðJSÞ ¼ −2.75.
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bulk dispersion in Figs. 1(c) and 1(d), comparing equilib-
rium and nonequilibrium. In equilibrium, we obtain only
states with positive frequencies, whereas in nonequili-
brium, where H ¼ H− < 0, the bands are shifted down
in frequency, and we now obtain states with negative
frequencies. The negative-frequency modes have opposite
handedness compared with the positive frequency modes,
and thus rotate counterclockwise, whereas the positive
frequency modes rotate clockwise. They also carry oppo-
site angular momentum. The shift down in frequency can
be explained from the fact that in nonequilibrium the
effective magnetic field δH=δSi is pointing against the
magnetization, thus lowering the frequency of the modes.
We refer the reader to a full discussion about the particle-
hole symmetry and its implications to the Supplemental
Material [40], where we also discuss the stability and band
structure in the presence of magnetic anisotropy.
The topological invariant for this system, the Chern

number of the band n, is now defined as 2πΩn ¼P
k εij∂kiA

n
j , where An

j ¼ ihΨn
kjσ3j∂kjΨn

ki is the Berry
connection [11,44,45] and Ψn

k is the nth eigenstate. In
the bulk band structure, Figs. 1(c) and 1(d), we have
indicated the Chern number, �1, for the two bands. In
equilibrium, the two bands have opposite Chern number
and therefore there are topologically protected chiral edge
modes connecting the two bands. In nonequilibrium, the
Chern number of the bands is preserved, and since one
band is shifted down to negative frequency, we therefore
expect the edge modes connecting the two bulk modes to
cross zero frequency.
To further illustrate the topological nature of the edge

states, we show the band structure of a ribbon, 16 unit cells
wide, with armchair edges in Figs. 1(e) and 1(f), and
indicate the edge localization in the colorscale. We
have chosen compensated boundaries, such that the edge
coordination number, i.e., the number of nearest neigh-
bors, is equal to the bulk coordination number, and discuss
the case of uncompensated boundaries in the Supplemental
Material [40]. In equilibrium, we obtain topologically
protected edge states, as can be seen from their localization
and their dispersion crossing the bulk band gap, and they
thus have a finite frequency. In nonequilibrium the edge
states remain, but are lowered in frequency and in fact
cross zero frequency. We still have one forward-moving
mode localized on one side of the ribbon, and a backward-
moving mode on the other side. However, there are
forward- and backward-moving edge modes with both
positive and negative frequencies, and thus opposite
handedness.
Numerical verification of the edge modes.—To verify

the existence of the edge states at low frequencies, we
numerically solve the LLG Eq. (1), including Gilbert
damping and the spin-orbit torque needed to stabilize the
nonequilibrium setup. This allows us to capture the full
dynamics, in particular nonlinearities that are not included

in linear spin-wave theory. We describe the specifics of the
simulations used in the Supplemental Material [40] and
show the resulting dynamics in Fig. 2. We focus on the
nonequilibrium dynamics, and use the same parameters
used to calculate the band structure in Figs. 1(c) and 1(f),
and set α ¼ 10−3 and Js ¼ αH−. A spin wave is excited
with positive frequency ω0=JS ¼ 0.7, Figs. 2(a)–2(c), and
negative frequency ω0=JS ¼ −0.7, Figs. 2(d)–2(f), at one
single edge site using a transversely oscillating magnetic
field with frequency ω0. We show the spin-wave amplitude,
defined as the deviation of the spins from the z axis,
MiðtÞ≡ 1 − Szi ðtÞ.
For both positive and negative excitation frequency,

an edge mode is excited, which travels clockwise around
the system. Its topological stability due to the absence of
backscattering is proven by its bypassing of the defect in
the upper left corner, where three edge spins are missing.
Importantly, the excitations with opposite frequency have
an opposite handedness, i.e., the individual spins rotate in
the opposite direction in the ðx; yÞ plane and thus carry
opposite angular momentum. This is in sharp contrast to
the equilibrium situation, in which all magnons have the
same chirality and carry the same angular momentum.
Experimentally, this difference could be accessed by means
of time-resolved spin pumping [46], because the pumped
spin current IsðtÞ ∝ ẑ · ½SiðtÞ × ṠiðtÞ� [47] and the resulting
spin-Hall voltage are a direct probe of handedness and,
hence, of the topological negative-frequency excitations.
To illustrate this, we show the pumped spin current,
IsðtÞ, for a site on the edge in Fig. 2(g). IsðtÞ is opposite
between positive and negative excitation frequencies,
showing that the excitations carry opposite angular momen-
tum. Moreover, the arrival times of opposite excitation

FIG. 2. Spin dynamics simulation of a finite-size system in
nonequilibrium, revealing the time evolution under a local
excitation pulse with (a)–(c) positive and (d)–(f) negative fre-
quency at �ω0, respectively. The chiral propagation direction of
the edge modes is indicated by the arrow. The system starts in a
uniform state, S ¼ Sẑ, and is continuously excited at one single
site at the left edge, circled in (a),(d). (a)–(c) Snapshots of the
time evolution of the spin-wave amplitude MiðtÞ for a positive
excitation frequency, þω0. (d)–(f) Same as (a)–(c) but for a
negative excitation frequency, −ω0. (g) The pumped spin current
IsðtÞ for a site on the edge. The dashed vertical lines correspond
to the times at which the snapshots in (a)–(f) are taken.
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frequencies differ, which we attribute to the different group
velocity of the excited modes. This difference in group
velocity can also be seen from the asymmetry of the band
structure with respect to ω ¼ 0, Fig. 1(f), and is tuneable by
varying the magnetic field. Finally, we observe that the
absolute magnitude of IsðtÞ is larger for negative-frequency
excitations. This is explained by the Gilbert damping, αω,
having the opposite sign for negative-frequency modes
compared with their positive frequency counterparts.
Propagating spin-wave spectroscopy.—A central goal in

the field of magnon topology is the transport of angular
momentum by topologically protected edge states in mag-
nonic devices [48]. Since usual frequencies of the edge states
are in the THz range, these cannot be excited using conven-
tional microwave antennas. However, in the nonequilibrium
setup, the edge states extend to zero frequency, and are
therefore easily accessible. We thus consider a PSWS
experiment [49], where two antennas are placed a distance
d from each other. One antenna excites spin waves, which
are picked up by the second antenna after traveling through
the film (see the inset of Fig. 3 for a device illustration). We
consider a nanoribbon 10 unit cells wide, with length d,
orientated such that the edges are of the armchair type, which
corresponds to the dispersion shown in Figs. 1(e) and 1(f).
In the excitation antenna, the Oersted field oscillating

with frequency ω excites all possible spin waves with the
frequencies �ω. Specifically, we model the excitation field
by adding a local magnetic field term, ∂tSijexc ¼ Si × hi, to

the LLG Eq. (1), expand in deviations m�
i , and numer-

ically solve the resulting equation of motion to lowest
nontrivial order in m�

i in position and frequency space.
The second antenna is sensitive to the total microwave
power, which we define as the transmission SðωÞ≡P

i∈Rp
jmiðωÞj2, where Rp are the sites connected to the

pickup antenna. We also model a concentration w of defects
by removing spins, in order to capture the topological
protection of the edge modes. The details of this calculation
are discussed in the Supplemental Material [40], where we
also consider three additional types of disorder to
show that the robustness of the zero-frequency edge states
is not dependent on the specific disorder considered in the
main text.
We show the resulting transmission in Figs. 3(a) and

3(b), comparing the equilibrium and nonequilibrium states,
and the topologically trivial state, D ¼ 0, and nontrival
state D=J ¼ −0.2, where D is the strength of the DMI. We
choose α ¼ 10−2 and stabilize the nonequilibrium state
with a spin-orbit torque, Js ¼ αH. We first focus on the
equilibrium state, Hþ=JS ¼ 0.1, and simulate finite dis-
order, w ¼ 0.05, i.e., 5% of all sites have a defect. In
Fig. 3(a), we observe a broad peak in transmission at
frequencies in the topologically nontrivial bulk band gap
for D=J ¼ −0.2. This feature is absent for D ¼ 0, proving
that it is an effect of the nontrivial topology because the
backscattering-immune edge states enable transmission
while the bulk state transmission is suppressed.
Turning now to the topologically nontrivial nonequili-

brium state, H−=JS ¼ −2.75 and D=J ¼ −0.2, where the
edge state lies around zero frequency [cf. Fig. 1(f)], we see
that transmission instead peaks around zero frequency.
Again, we find a clear distinction with the topologically
trivial case, D ¼ 0, where transmission is suppressed at
low frequencies at finite disorder. An important feature
of the zero-frequency edge states is their higher transmission
comparedwith the equilibrium edge states. This we attribute
to the Gilbert damping, αω, being proportional to frequency
and thus lower for the zero-frequency edge states.
The transmission follows an exponential decay as a

function of distance, i.e., Sðd;ωÞ ∝ exp½−d=λðωÞ�, where
the decay length λðωÞ is a function of the excitation
frequency. We therefore fit the transmission over a range
of separation distances 20a < d < 200a (a lattice constant)
and obtain an estimate for the decay length, λðωÞ, which we
show as a function of excitation frequency, ω, in Figs. 3(c)
and 3(d). We observe that the decay length reflects the
topological protection of the edge states, peaking when the
edge states are excited. Furthermore, the decay lengths are
much larger for D=J ¼ −0.2 compared with D ¼ 0,
reflecting the robustness against disorder of the edge states.
Most importantly, in nonequilibrium, in the limit ω → 0
the decay length increases, which is in stark contrast to the
equilibrium state, where the finite gap induced by the
magnetic field blocks transmission.

FIG. 3. Propagating spin-wave spectroscopy experiment as
sketched in the inset, with edge modes excited by one antenna
traveling through the film and picked up by the second antenna.
(a),(b) The transmission at finite disorder, w ¼ 0.05, and a fixed
distance d ¼ 200a, as a function of excitation frequency ω, for
the equilibrium state (H ¼ Hþ) and the nonequilibrium state
(H ¼ H−) for the topologically trivial state, D ¼ 0 and nontrivial
state D=J ¼ −0.2. Transmission is calculated with a finite
Gilbert damping and a stabilizing spin-orbit torque for the
nonequilibrium state. (c),(d) The corresponding decay length
of the transmission. The dashed and dashed-dotted lines indicate
the bottom and top of the bulk band gap.
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Discussion and conclusion.—We have shown that by
considering the magnetic excitations on top of a non-
equilibrium state, stabilized by spin-orbit torques, we can
effectively lower the frequency of topologically protected
chiral magnon edge modes. We obtain edge states with
negative and positive frequency, and we have confirmed
their existence by numerically solving the Landau-Lifshitz-
Gilbert equation, showing their stability and robustness
against defects. Furthermore, we have shown that in a
propagating spin-wave spectroscopy experiment, the edge
modes can be directly detected.
In the Supplemental Material [40], we provide estimates

for the required strength of the external magnetic field and
spin-orbit torque for specific material choices. Here we note
that in general the magnetic fields and spin-orbit torque,
αH−, are proportional to the frequency of the edge mode in
equilibrium. It would therefore be beneficial to consider
this nonequilibrium state in a topological magnon crystal,
where the frequencies of the edge modes are set by dipolar
interaction, which is in the range of GHz [11,50]. An
alternative approach would be to look at the transient
regime, by first aligning the system to an external magnetic
field, and then reversing the direction of the applied field.
For a short transient period one would then observe the
same features as discussed here, but after some time the
system would relax to equilibrium.
Our strategy can be used to lower other topological

magnon excitations to zero frequency. Specifically, magnon
Weyl semimetals would be an interesting prospect because
zero-frequency Weyl points and associated topological
surface states could come with the same transport anoma-
lies as their finite-frequency counterparts [18,51,52].
Beyond magnons, it will be exciting to explore similar
ideas for other bosonic Chern insulators, such as those
formed by photons [3] or phonons [53,54]. In these bosonic
systems, nonequilibrium is accessible through external
pumping, analogous to the spin-orbit torque used in this
work. Finally, we note that nonequilibrium incoherent Hall-
type transport [55–57] could be of interest because low-
frequency edge states could potentially dominate transport.
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