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Environment-induced localization transitions (LT) occur when a small quantum system interacts with a
bath of harmonic oscillators. At equilibrium, LTs are accompanied by an entropy change, signaling the loss
of coherence. Despite extensive efforts, equilibrium LTs have yet to be observed. Here, we demonstrate that
ongoing experiments on double quantum dots that measure entropy using a nearby quantum point contact
realize the celebrated spin-boson model and allow to measure the entropy change of its LT. We find a
Kosterlitz-Thouless flow diagram, leading to a universal jump in the spin-bath interaction, reflected in a
discontinuity in the zero temperature QPC conductance.
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Introduction.—Environment-induced localization transi-
tions (LTs) occur when a small quantum system switches
from coherent to incoherent dynamics due to its interaction
with an infinite number of environmental degrees of
freedom. A simple example of this is the spin-boson model
[1,2]. It was proposed already 40 years ago [3–5] that when
the coupling of the spin or two-level system to the bath
exceeds a certain threshold, the tunneling between the two
levels vanishes. Despite numerous proposals to observe this
phase transition in various mesoscopic [6–9] and atomic
[10,11] systems, or by tracking the dynamics of the
quantum system [11], this LT has not been observed to
date without external driving [12]. This is largely due to the
experimental difficulty of continuously tuning the coupling
or altering the power-law spectrum of the bosonic bath.
Different than dissipative phase transitions [13–18] that
occur out of equilibrium, LTs can be identified in their
thermodynamic properties. Here, utilizing the fact that the
entropy displays a characteristic change across the tran-
sition [19] we demonstrate that already existing experi-
mental setups measuring the entropy of quantum dot (QD)
systems [20–22] can be employed to observe the hitherto
elusive LT for the spin-boson model at equilibrium.
Our proposed realization of the two-level system is a

double dot (DD) containing a single electron, having a pair
of states denoted fj01i; j10ig, with the electron being in the
right or left QD, respectively (the spin of the electron is
irrelevant). The role of the bath is played by a nearby
quantum point contact (QPC), whose transmission is
controlled by gate voltage Vg, which acts as a charge
detector [23] of QD A, see Fig. 1(a). Below, we relate the
QPC QD electrostatic coupling to an effective change of the
scattering phase shift δ in the QPC, occurring as an electron
enters QD A.

The decoupled system (δ ¼ 0) undergoes a kB log 2
entropy drop (where kB is the Boltzmann constant, set to
unity in the following) as the temperature is lowered below
the DD tunneling amplitude w. Indeed, the symmetric DD
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FIG. 1. (a) Model: quantum dot (QD) A tunnel coupled (via w)
to QD B, here another QD, and electrostatically coupled (as
parametrized by δ) to a quantum point contact (QPC). δ is tuned
by a gate voltage Vg and Ḡ is the average QPC conductance. The
inset shows a conductance jump obtained by changing VgðδÞ.
(b) RG flow diagram. In the red (blue) shaded area, δ flows to
δ ≠ 0 (δ ¼ 0). Two black dotted lines correspond to the w axis of
(c) and (d) and the black dashed line corresponds to the Vg axis of
the inset of (a). (c) At δ < δc, there is no quantum phase transition
tuned by w. (d) For δ > δc at T ¼ 0, there appears a LT at w ¼ wc
(empty circle), characterized by an entropy jump.

PHYSICAL REVIEW LETTERS 131, 126502 (2023)

0031-9007=23=131(12)=126502(6) 126502-1 © 2023 American Physical Society

https://orcid.org/0000-0001-9176-7255
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.126502&domain=pdf&date_stamp=2023-09-22
https://doi.org/10.1103/PhysRevLett.131.126502
https://doi.org/10.1103/PhysRevLett.131.126502
https://doi.org/10.1103/PhysRevLett.131.126502
https://doi.org/10.1103/PhysRevLett.131.126502


transitions from the high-temperature state, described by
the diagonal density matrix ðj01ih01j þ j10ih10jÞ=2, to the
coherent ground state ðj01i þ j10iÞ= ffiffiffi

2
p

. We predict that
for a nonzero coupling to the bath, δ > 0, the temperature
scale for this incoherent-coherent crossover decreases, and
eventually vanishes at the LT at some δ ¼ δc. This can be
understood from the Anderson orthogonality catastrophe
[9,24,25]. For δ > δc the orthogonality between the many-
body wave functions of the QPC for the QD states j01i and
j10i effectively turns the tunneling amplitude w to zero, see
Figs. 1(b) and 1(d), reminiscent of the Zeno effect [26,27],
and the entropy remains log2 down to zero temperature. We
find that both w and the effective electrostatic interaction δ
are scaling variables of the LT described by the renorm-
alization group (RG) flow diagram of a Kosterlitz-Thouless
(KT) transition, see Fig. 1(b). While it may be difficult to
tune δ, the LT can be driven as a function of tunneling
coupling w, which can be readily tuned by a gate. As seen
in Fig. 1(d) there is a critical tunneling amplitude wc below
which the entropy remains finite at zero temperature, while
coherence develops for w > wc, manifested as a drop of the
entropy to zero at low temperature.
From this flow diagram, we can see that the effective

QPC QD interaction δeff at low temperature, being the
destination of the flow diagram, changes discontinuously
depending on its bare value, between a finite value δeff ≥ δc
in the incoherent phase, and δeff ¼ 0 in the coherent phase.
This universal step is the analog of the discontinuity in the
superfluid density in the standard KT transition due to
vortices. In our system, unexpectedly, this is reflected as a
sudden change of the QPC conductance as T → 0, see inset
of Fig. 1(a).
Model.—As depicted in Fig. 1(a), we consider a DD

electrostatically coupled to a QPC with Hamiltonian
H ¼ HDD þHQPC. HDD, defined explicitly in Eq. (6)
below, describes two subsystems. Subsystem A is a QD
in the Coulomb blockade regime which accommodates
only two charge states labeled by NA ¼ 0, 1, while
subsystem B could be, in principle, arbitrary. For simplic-
ity, we consider here the case when the subsystem B is
another QD (for more examples, see [28]). The two
subsystems are connected via a tunneling amplitude w.
We use the Pauli matrix σz ¼ j1ih1j − j0ih0j to denote the
charge operator of QD A, N̂A ¼ ð1þ σzÞ=2. For the
symmetric DD system, HDD ¼ wσx.
The QPC consists of a quantum wire running along the x

direction, interrupted by a potential barrier VNA
ðx; yÞ,

HQPC ¼
Z

dxdy
X
s¼↑;↓

Ψ†
sðx; yÞ

�
−
ℏ2

2m
∇2

þ V0ðx; yÞj0ih0j þ V1ðx; yÞj1ih1j
�
Ψsðx; yÞ: ð1Þ

As a consequence, the potential in the QPC suddenly
switches between V1ðx; yÞ and V0ðx; yÞ as an electron

tunnels in and out of QD A. An explicit model for HQPC is
considered below in Eq. (9) where VNA

ðx; yÞ ¼ VðyÞþ
VNA

ðxÞ, with VNA
ðxÞ ¼ VNA

ð−xÞ. In this case, for each
transverse mode n ¼ 0; 1; 2;… of the potential VðyÞ the
scattering matrix is diagonal and encoded by the even and

oddphase shifts δðe;nÞNA
, δðo;nÞNA

. Formoregeneral cases see [28].
For convenience, we label parity, channel, and spin index
collectively by a single index i ¼ fe=o; n; sg ¼ 1;…; imax,
and also define the difference and average phase shifts in
each channel δi ¼ ðδi0 − δi1Þ=2 and δ̄i ¼ ðδi0 þ δi1Þ=2.
Mapping to the spin-boson model.—At energies close to

the Fermi energy, the fermion fields ψn;sðxÞ have left
and right components [34,35], ψn;sðxÞ ¼ eikF;nxψR;n;sþ
e−ikF;nxψL;n;s. It allows us to define even and odd chiral
fields ψe=o;n;s ¼ ½ψR;n;sðxÞ � ψL;n;sð−xÞ�=

ffiffiffi
2

p
which we

bosonize [36] into

HQPC¼ vF
X
i

�Z
dx
4π

ð∂xϕiÞ2−
δi
π
σz∂xϕið0Þ

�
þHps; ð2Þ

with ½ϕjðxÞ; ∂yϕkðyÞ� ¼ −2πiδjkδðx − yÞ [36]. The second
term ∝ σz describes the NA-dependent potential. The
last term Hps ¼ −ðvF=πÞ

P
i δ̄i∂xϕið0Þ is a constant po-

tential that can be removed by a unitary transformation

H → UHU† with U ¼ e−i
P

j
δ̄jϕjð0Þ=π . We define

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiX
i

δ2i

r
; ð3Þ

and ϕðxÞ ¼ ð1=δÞPi δiϕiðxÞ, along with imax − 1 orthogo-
nal combinations fϕ0

i; i ¼ 2;…; imaxgwhich do not interact
with σz. We obtain H ¼ HeffðϕÞ þ

Pimax
i¼2 H½ϕ0� where the

LT is captured by the effective model

HeffðϕÞ ¼
vF
4π

Z
dxð∂xϕÞ2 −

vF
π
δσz∂xϕð0Þ þ wσx: ð4Þ

This model is equivalent to the spin-boson model with an
Ohmic bath [28]. The term ∝ δσz describes the interaction
between the spin and the bosonic environment ϕðxÞ.
Anderson orthogonality catastrophe and LT.—One can

apply a similar transformation U0 ¼ eiσ
zδϕð0Þ=π to remove

the interaction ∝ δσz from Eq. (4). Then the tunneling term
∝ wσþ þ H:c: gets “dressed” by a bath operator known as a
boundary condition changing operator with scaling dimen-
sion xb ¼ 2ðδ=πÞ2 [9,34]. It reflects the orthogonality of the
many-body ground states of the QPC for NA ¼ 0, 1. Thus,
the tunneling w satisfies the RG equation dw=dl ¼ wð1 −
xtun − xbÞ where xtun ¼ 0 is the bare scaling dimension of
w. More generally, we find [28]

dw
dl

¼ w

�
1 −

�
δ

δc

�
2
�
;

dδ
dl

¼ −2δw2; ð5Þ
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where δc ¼ π=
ffiffiffi
2

p
for the DD. For small enough w, we see

that w switches, upon increasing δ, from being relevant to
irrelevant at δ ¼ δc. This critical interaction separates the
strong interaction phase δ > δc in which the coherent
tunneling is suppressed as in the Zeno effect, from the
weak interaction phase δ < δc with coherent tunneling.
Equivalently, there is an energy scale that vanishes at the
quantum phase transition [28,37] T� ≈ wπ2=4δcðδc−δÞ. More
generally, also δ flows according to the celebrated KT flow
diagram in Fig. 1(b). For δ > δc we deduce a LTas function
of w, see Fig. 1(d). We now apply numerical renormaliza-
tion group (NRG) calculations to demonstrate these sig-
natures more quantitatively.
NRG results.—The spinless DD is described by

HDD ¼ −μða†aþ b†bÞ þ Δða†a − b†bÞ
− wða†bþ H:c:Þ þ Ua†ab†b; ð6Þ

where μ and Δ denote, respectively, the DD chemical
potential and asymmetry. As finite asymmetry smears the
LT [28], we focus here on the symmetric case Δ ¼ 0. Here,
aðbÞ annihilates an electron in QD AðBÞ, N̂A ¼ a†a and we
define the DD occupancy N ≡ ha†aþ b†bi. μ is used to
continuously switch from the empty regime N ¼ 0 to the
singly occupied regime N ¼ 1. We assume U → þ∞ to
exclude double occupancy. We ignore real spin, assuming
that a particular electron spin is being trapped in the DD.
Our NRG calculations solve a fermionic lattice model

corresponding to Eq. (1), which is also equivalent at low
energy to the effective Hamiltonian Eq. (4) and hence
reproduces its critical properties. It consists [28] of a
fermionic semi-infinite tight binding chain interacting near
the origin with the DD. The interaction term is selected [28]
to yield the desired NA-dependent phase shift δ. We
compute the entropy, the total charge of the DD, and the
many-body energy levels.
Figure 2(a) shows the entropy SðTÞ in the singly

occupied regime. We consider the interesting case with
δ > δc. For w > wc, SðTÞ displays a drop by ln 2 below a
characteristic energy scale T� [defined as SðT�Þ ¼ 1

2
ln 2].

As displayed in Fig. 2(b) by the thick blue curve, upon
decreasing w, T� decreases and eventually vanishes at
w ¼ wcðδÞ. The precise form of the vanishing of T� is
shown in the inset, demonstrating the scaling behavior
expected near the KT transition. The resulting phase
diagram in Fig. 2(b), which is plotted for a few values
of δ, has the structure of Fig. 1(c) for δ < δc and Fig. 1(d)
for δ > δc. In particular, for δ < δc, T� only vanished at
w ¼ 0. Thus, the LT features a discontinuous change of
entropy at T → 0 as a function of w, see inset of Fig. 2(a).
Entropy from Maxwell relations.—Experimentally,

changes in the entropy upon varying the DD chemical
potential μ∶ μ1 → μ2 are accessible via the Maxwell
relation [20–22,38,39]

ΔSμ1→μ2 ¼
Z

μ2

μ1

dNðμÞ
dT

dμ: ð7Þ

Namely, by using the QPC as a charge detector, one
measures the differential charging curve dN=dT upon
varying μ from the empty to the singly occupied regime.
Since the entropy vanishes in the empty-DD regime, we
obtain the entropy of the spin-boson model described by
the singly occupied regime from this integral.
Figure 3 displays dN=dT as calculated from NRG (top

panel) and the entropy change Sðμ2Þ as obtained by
integration from μ1 ¼ −∞ to μ2 (lower panel), for two
different values of w, as shown in the inset of Fig. 3, at a
fixed temperature. In the absence of the QPC, the ground
state of the DD is unique (e.g., the symmetric state), and
thus the entropy increases as a function of μ, from zero, in
the empty-DD regime, to ln 2, when the empty and singly
occupied states are degenerate and then decrease back to

FIG. 2. (a) NRG results for the entropy versus T for various w
and for δ ¼ 1.03δc. For w > wc the entropy drops to zero at low
temperatures, but for w < wc it remains ln 2 down to T ¼ 0 as
exemplified by the sudden change in the entropy at T ¼ 0 at
w ¼ wc, depicted in the inset. (b) Crossover temperature T� for
various δ as a function of w. The blue thick line corresponds to the
parameter δ ¼ 1.03δc of (a), with the four colored markers
denoting the crossover temperatures for the four different curves
in (a). Inset: T�=D0 as a function of D0=ðw − wcÞ, demonstrating
the dependence T� ∝ exp½−const × ðw − wcÞ−1=2�, from which
we extract wc.
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zero in the singly occupied regime. This is observed when
w > wc (blue curves). However, once w becomes smaller
than wc (or δ becomes larger than δc for this value of w), the
behavior changes abruptly. Now, due to the loss of
coherence between the two QDs, the two singly occupied
states jN ¼ 1; NA ¼ 0; 1i are degenerate, resulting in the
increase of the entropy to ln 3 before dropping to ln 2 for
the singly occupied state.
Conductance jump.—For a 2D superfluid, the Kosterlitz-

Thouless RG equations result in a universal jump in the
superfluid density [40]. What is then the corresponding
discontinuous quantity in our system?.
The DD creates a different single-particle scattering

potential on the QPC for each value of NA. We can use
the Landauer formula, which gives the conductance at
T ¼ 0

GNA
¼ 2e2

h

X
n

cos2ðδðe;nÞNA
− δðo;nÞNA

Þ: ð8Þ

So a discontinuity in δ yields a discontinuity in GNA
. To be

concrete, consider the model

HQPC ¼ −
ℏ2

2m
ð∂2x þ ∂

2
yÞ þ

mω2y2

2
−
ℏω
2

þ V0j0ih0j þ V1j1ih1j
cosh2ðx=aÞ : ð9Þ

The Fermi momentum kF;n of the nth transverse mode satis-
fies EF ¼ ℏ2k2F;n=2mþ nℏω with n ¼ 0; 1;…; bEF=ωc.
We let V0 ¼ Vg and V1 ¼ Vg þ ΔV, with fixed ΔV char-
acterizing the electrostatic interaction and a parameter Vg

tunable using a gate voltage.
For each mode, one can analytically compute [41] the

even and odd phase shifts, and thus obtain δ. In Fig. 4(a) we
plot the calculated δ versus Vg for a constant ΔV for
selected parameters corresponding to 5 transverse modes.
Then δ displays peaks approximately when a transverse

mode becomes reflecting. δðwÞc is marked by dashed lines
for two values of w. In each case, we can see regions where

δ > δðwÞc are achieved for large enough ΔV.
From Fig. 1(b), one can see that upon increasing δ, as

obtained by continuously varying Vg, when the condition

FIG. 3. (a) dN=dT for fw1=D0; w2=D0g ¼ f0.03; 0.17g as
function of the DD chemical potential for T=D0 ¼ 7.5 × 10−9.
Red (blue) lines describe the decoherence (coherence) phase,
corresponding to the green (magenta) region as depicted in the
inset. (b) Entropy Sðμ2Þ obtained by integrating dN=dT, see
Eq. (7). We shifted the μ axis such that peaks occur at the origin.
The blue curves for w > wc agree with the entropy of a decoupled
DD, while for w < wc the system is driven to the incoherent
phase. As a comparison, the black diamonds show the entropy
obtained directly from NRG.

FIG. 4. (a) Phase shift δ for various electrostatic couplings ΔV,
versus a gate voltage controlling the potential barrier [EF=ω ¼ 4.3

and ℏ2=ð2ma2Þ=EF ¼ 100]. Dashed horizontal lines denote δðwÞc

for two values of w. (b) Renormalized phase shift δeff for
ΔV=EF ¼ 0.1125 andw=D0 ¼ 0.001 (red) orw=D0 ¼ 0.1 (blue).

Whenever δ crosses δðwÞc there is a discontinuous jump in δeff .
(c) Corresponding conductance jumps.
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δ > δðwÞc is met, the effective interaction δðl → ∞Þ≡ δeff
suddenly jumps from 0 to δc ¼ π=

ffiffiffi
2

p
. In Fig. 4(b) we plot

δeff as extracted from the NRG finite-size spectrum [28],
indeed demonstrating these sharp jumps.
For either the coherence or decoherence fixed points

with δ → 0 or w → 0, respectively, one can recombine
the two terms H ¼ HeffðϕÞ þ

Pimax
i¼2 H½ϕ0� by replacing

δ → δeff . Returning to the original basis fϕig, one can
read off the even and odd phase shifts in each channel,

�
δðiÞ0;1

�
eff

¼ δ̄i � δi
δeff
δ

: ð10Þ

Substituting Eq. (10) in the expression (8) for the con-
ductance, we see that when δeff changes discontinuously
across the LT, so do bothG0 andG1. In Fig. 4(c) we plot the
average conductance Ḡ ¼ ðG0 þG1Þ=2 at T ¼ 0. We see
that it displays discontinuities precisely when the LT is
crossed for each value of w (in Ref. [28] we show that a
similar discontinuity can occur for a fixed Vg as a function
of w). Thus, the LT of the KT type can be inferred from the
conductance itself.
Summary.—Recent experiments demonstrated the ability

to measure entropy changes in mesoscopic systems by
coupling them to charge detectors. Here, we demonstrate
that even at thermal equilibrium the charge detector may
strongly affect the system and drive an environment-
induced localization transition. The resulting entropy
change describes the process of a quantum measurement
of a state as it is being measured by an environment.
Relating this entropy change due to measurement of a
subsystem to entanglement entropy between the two
subsystems is left for future work [42–44].
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