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Traditionally, the Coulomb repulsion or Peierls instability causes the metal-insulator phase transitions in
strongly correlated quantum materials. In comparison, magnetic stress is predicted to drive the metal-
insulator transition in materials exhibiting strong spin-lattice coupling. However, this mechanism lacks
experimental validation and an in-depth understanding. Here we demonstrate the existence of the magnetic
stress-driven metal-insulator transition in an archetypal material, chromium nitride. Structural, magnetic,
electronic transport characterization, and first-principles modeling analysis show that the phase transition
temperature in CrN is directly proportional to the strain-controlled anisotropic magnetic stress. The
compressive strain increases the magnetic stress, leading to the much-coveted room-temperature transition.
In contrast, tensile strain and the inclusion of nonmagnetic cations weaken the magnetic stress and reduce
the transition temperature. This discovery of a new physical origin of metal-insulator phase transition that
unifies spin, charge, and lattice degrees of freedom in correlated materials marks a new paradigm and could
lead to novel device functionalities.
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Ever since the first observation of theVerwey transition [1]
of magnetite in 1939, the metal-insulator phase transition
(MIT) has captivated generations of scientists and engin-
eers for fundamental scientific knowledge and expansive
device applications [2–6]. Traditionally, MIT in most well-
established quantum materials is governed by the Mott-
Hubbard mechanism, where strong electronic repulsion in
transition metals drives the system from metallic to an
insulating state [7–9]. In addition, structural instability
(Peierls transition) and the presence of lattice defects or
disorders (Anderson transition) are also known to causeMIT
in some materials [10–14]. Concomitant with the MIT,
strongly correlated materials can also undergo structural and
magnetic phase transition due to their coupled spin, charge,
and lattice degrees of freedom [15–18]. However, as the
aforementioned mechanisms explain the origin of the phase
transition as driven by a single or double order parameter
[19–21] (either electronic and/or structural), independent

control of the MIT with other degrees of freedom such as
magnetic ordering or structural symmetry is challenging.
Recent theoretical modeling has predicted that materials

exhibiting strong spin-lattice coupling could be the host of a
new type of MIT accompanied by simultaneous structural
and magnetic phase transition [22–26]. Non-spin-polarized-
to-spin-polarized magnetic ordering is expected to generate
an anisotropic magnetic stress that changes its structure and
the electronic phase. Such a magnetic stress-driven phase
transition mechanism which unifies the magnetic, mechani-
cal, and electrical order parameters in correlated materials
offers much freedom to achieve tunable properties in a single
material system. Besides, since the Coulomb repulsion or
Peierls instability-driven phase transition mechanism is
mainly observed in transition metal oxides and sulfides
[27–29], the new transition mechanism could also lead to
a plethora of new materials exhibiting the MIT, such
as the nitride pnictides, antiperovskites, etc. Therefore,
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experimental observation of the magnetic stress-driven MIT
and its manipulation is of great interest.
To study the magnetic stress-driven MIT, we choose

archetypal material chromium nitride (CrN) that exhibits
large magnetic stress, as predicted by the density functional
theory [22,23,30]. CrN is paramagnetic at high temperature
and becomes antiferromagnetic (AFM) below the Néel
temperature ðTNÞ ≈ 271–280 K [31–36]. Concomitant to
the magnetic transition, the structural symmetry changes
from the rocksalt (Fm3̄m) at high temperature to ortho-
rhombic (Pnma) below TN. Such simultaneous magnetic and
structural phase change is accompanied by the electronic
transition from the high-temperature insulating phase to the
low-temperature metallic phase. It contrasts the nature of
MIT described by Mott, Anderson, and Peierls-transition
mechanisms, where the metallic phase at high-temperature
changes to the insulating phase at low temperature.
MIT in CrN was modeled theoretically in terms of the

anisotropic magnetic stress [23,24]. The magnetic-stress T
in a system is defined as the stress associated with the
change of spin ordering. For two different magnetic

orderings O1 and O2, the magnetic stress can be expressed
as T ¼ TO1 − TO2

, which can be further mapped to the
magnetic stress per bond as T ¼ −Si:Sjtij, where S is the
spin matrix of the ith and jth site atom and tij is the stress
tensor, related to the exchange interaction parameter Jij
between the atoms. In case of CrN, the magnetic stress
appears around the transition point TN . Cooling down the
paramagnetic CrN results in polarization of the individual
spin in an unusual antiferromagnetic ordering (AFM2

½11̄0�)
where two ferromagnetic (FM) layers alternate along the
½11̄0� direction of the rocksalt CrN [37–39] [Fig. 1(a)].
Because of this unusual spin ordering, the Cr atoms in
rocksalt CrN are subjected to two different stress. In
Fig. 1(a), the Cr-A atom has two neighboring atoms
(Cr-B and Cr-C) with opposite spins and two neighboring
atoms (Cr-D and Cr-E) with similar spins. As a result, the
Cr-A atom is subjected to compressive stress (Txx) along
the x direction and tensile stress (Tyy) along the y direction.
This anisotropic stress is relieved by the lattice contraction
along the x direction and lattice expansion along the

FIG. 1. (a) Schematic showing a nonspin polarized to AFM non spin-polarized transition accompanied with the structural transition in
CrN. After the initial spin polarization, a compressive magnetic-stress Txx and tensile magnetic-stress Tyy distort the cubic structural
symmetry and transform it into an orthorhombic structure. (b) Temperature-dependent resistivity of relaxed (blue) and strained films
shows that compressive stress increases the TN , while tensile stress decreases TN in CrN. (c) The evolution of transition temperature with
in-plane strain shows a linear behavior. (d) Schematic description of the changes in magnetic stress in CrN with epitaxial strain. The Txx
decreases (T−

xx), and increases (Tþ
xx) in tensile and compressively strained films, respectively. The Tyy behaves conversely to Txx.

(e) Temperature-dependent electrical resistivity of 10 nmCrN on STO substrate at two different out-of-plane magnetic fields of 0 and 3 T.
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y direction, which changes the crystal symmetry of CrN
from rocksalt-to-orthorhombic. Subsequently, the elec-
tronic phase changes from insulating to metallic. Thus,
the magnetic stress-driven phase transition mechanism in
CrN not only explains the origin of MIT but also suggests a
method to tune the transition temperature through the
manipulation of magnetic stress.
Despite the theoretical prediction, experimental valida-

tion of the transition mechanism is still lacking. Though
efforts have been made using photoemission spectroscopy
to understand the electronic nature of the two different
phases, as well as to understand the strain and size-induced
changes in the electrical resistivity, no conclusive work has
been performed to demonstrate the magnetic stress-driven
phase transition mechanism experimentally [35,40]. As the
anisotropic magnetic stress due to magnetic exchange-
interaction in CrN is relatively low, experimental control
and manipulation of such interactions are extremely
challenging. Furthermore, depositing phase-pure single-
crystalline CrN thin films that exhibit MIT is very difficult
[41–45], which has further hindered the exploration of phase
transition phenomena in CrN for a long time. However,
recent experimental work [43,46] has shown that by utilizing
a very small Cr-flux during deposition and with suitable
growth temperature, phase-pure single-crystalline CrN thin
films can be obtained that reproducibly exhibit the MIT.
Given that the deposition conditions of CrN thin film that
shows MIT are now well-developed, the hypothesis of the
magnetic stress-driven MIT could be verified. Here we
consider the epitaxial strain and the inclusion of substitu-
tional non-magnetic cations as two different means to
manipulate the magnetic stress.
To this end, we deposited biaxial compressive and

tensile-strained single-crystalline CrN thin films on (001)
SrTiO3 (STO) and (001) MgO substrates, respectively. As
CrN has an equilibrium lattice constant of 4.15 Å, it
exhibits a lattice-mismatch of ∼ − 5.9% with (001) STO
and ∼1.4% with (001) MgO substrates. Film thicknesses
are limited to less than 10 nm to prevent strain relaxation
due to plastic deformation. Relaxed (001) CrN with 240 nm
thickness is further deposited separately.
The temperature-dependent electrical resistivity mea-

surements show that the relaxed 240 nm CrN thin film
exhibit MIT at ∼278 K accompanied by a hysteresis of
∼2 K between the heating and cooling cycles [Fig. 1(b)].
The hysteresis temperature is quite robust irrespective of
the changes in the heating and cooling rates (Fig. S4 in
Supplemental Material [47]). Starting from ∼235 K up to
the MIT point (TN ∼ 278 K [33,48]), resistivity increases
with the increase in temperature, highlighting the metallic
behavior of CrN. However, the resistivity decreases with
increasing temperature after the MIT point, clearly showing
the high-temperature semiconducting nature.
Compared to the relaxed film, ultrathin 10 and 5 nm CrN

deposited on STO substrate exhibit MIT at ∼312 and

∼325 K [Fig. 1(b), S5], respectively. The compressive
strained films exhibit a hysteresis of ∼2–3 K, further
ensuring their first-order MIT behavior. In contrast, tensile
strained 10 and 5 nm CrN films deposited on MgO
substrate exhibit MIT at ∼262 and ∼253 K, respectively.
Since the amount of tensile or compressive strain stored in a
5 nm CrN is larger than that in a 10 nm film due to strain
relaxation with increased thickness, the measured phase
transition temperature correlates with the sign and amount of
strain in the films. A plot of the phase transition temperature
with film thickness or strain shows [Fig. 1(c)] a linear
behavior. Thus, through controlled strain engineering, a
desired MIT temperature from ∼253 to ∼325 K can be
achieved in CrN. Away from the MIT point, at low
temperatures, all the CrN films exhibit an increase in
resistivity with the decrease in temperature (Fig. S5 [47])
due to weak electronic localization.
The increase or decrease in TN of CrN on STO=MgO

substrates can be explained in terms of the changes in
magnetic stress due to epitaxial strain [Fig. 1(d)]. In the
case of CrN film deposited on STO substrate, the com-
pressive epitaxial strain shortens the in-plane Cr-Cr dis-
tance compared to the Cr-Cr distance in a relaxed film. As a
result, the AFM exchange-interaction along the x direction
increases, resulting in rocksalt-to-orthorhombic structural
transformation at higher temperatures. In comparison, for
CrN film on MgO substrate, the increased Cr-Cr distance
weakens the AFM exchange-interaction, and thus, the
transition occurs at a much lower temperature.
Interestingly, the magnetic-field-dependent electrical

resistivity of 10 nm CrN=STO shows [Fig. 1(e)] that
the resistivity remains unchanged in the metallic region
(T <TN) and exhibits a small change (difference of ∼3%)
in the insulating regions (T > TN). This is presumably
because, in the metallic region, the CrN is AFM, which
shields the effects of the external magnetic field on
the transport properties. However, as CrN acquires a
paramagnetic phase in the insulating region, the transport
of carriers is slightly affected by the external magnetic field.
Further, to correlate the electronic properties with

magnetic ordering, temperature-dependent magnetization
(M-vs-T) of a 10 nm CrN, and exchange-bias (EB) of a
10 nm=10 nm CrN=Mn3AlN bilayer deposited on STO
substrates are measured [49]. Mn3AlN is a FM antiper-
ovskite nitride that exhibits a high Curie temperature (Tc)
of ∼800 K [47,50]. In theM-vs-T measurement at 500 Oe,
the moment remains almost constant in the 350–320 K
temperature range. However, as the temperature is reduced
below ∼320 K, the magnetization increases drastically,
which highlights the onset of the magnetic phase transition
[Fig. 2(a)]. Note that the negative value at the moment axis
is due to the contribution of the diamagnetic STO substrate.
An AFM hysteresis curve (M-vs-H) measured at 2 K is
shown in the inset of Fig. 2(a). A prominent EB ðHEBÞ ∼−350 Oe at 2 K and −60 Oe at 50 K is obtained for the
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CrN=Mn3AlN bilayer system [Fig. 2(b)] which proves the
AFM nature of CrN. The EB values monotonically increase
with the decrease in temperature [Fig. 2(b) inset]. Thus,
the combined M-vs-T, M-vs-H, and EB measurements
confirm the paramagnetic-to-antiferromagnetic transition
around ∼320 K in a compressively strained 10 nm CrN
film on STO substrate. This magnetic transition correlates
with the electrical phase transition at ∼312 K observed in
the same 10 nm CrN=STO film. Therefore, the strain-
induced change in the MIT temperature and the magnetic
measurements indicate the presence of a driving force that
has a magnetic origin.
Having demonstrated the MIT, the concomitant struc-

tural transition is probed with temperature-dependent
synchrotron-radiation high-resolution x-ray diffraction
(HRXRD) performed at the high-resolution diffraction
beam line P08 at PETRA III (DESY) [51]. Structural
transition in CrN at TN from the rocksalt-to-orthorhombic
phase involves a reduction in the lattice parameter a (a0

p
2)

and increase in the lattice parameter b (a0=
p
2) with

a ¼ 2a0 sinðα=2Þ, b ¼ a0 cosðα=2Þ, c ¼ a0 relationship,
where α ≈ 88° and a0 is the cubic equilibrium lattice
parameters.
At room temperature (300 K), asymmetric ω − 2θ

HRXRD mapping of relaxed CrN deposited on MgO,
and STO substrates show [Fig. 3(a), S8 [47] ] two peaks
each that correspond to the 222 CrN films and, 222
substrates diffraction spots, respectively. Utilizing Bragg’s
law, CrN lattice parameter of 4.15 Å is calculated in the
rocksalt phase on both substrates, which is consistent with
literature reports [41,48]. However, as the sample temper-
ature is lowered to 250 K, the rocksalt 222 (r-222) CrN
peak at 40.40° splits into the 022 and 402 CrN orthorhom-
bic peaks at ∼40.07° and ∼40.82°, respectively [Figs. 3(b)
and 3(c)]. Subsequent lattice spacing calculations verify
the orientation of these orthorhombic peaks due to the
structural transition. The compressively strained 10 nm
CrN on STO substrate also shows structural transition

[Figs. 3(d)–3(f)]. A detailed structural characterization is
presented in the Supplemental Material [47].
Interestingly, the r-222 peak splits into two sets of 022

and 402 orthorhombic peaks at the same 2θ but at different
ω positions. This twining arises due to the symmetry
equivalent AFM2

½11̄0� spin alignment along two different

directions ½11̄0� and [110] [Fig. S9]. The magnetic stress
during the rocksalt-to-orthorhombic structural transition
occurs along both the ½11̄0� and [110] directions, which
results in orthorhombic CrN grains with the same crystal
symmetry but different in-plane orientations. The obser-
vation of the twining during the phase transition itself
points to the anisotropy of the magnetic stress that is
predicted in theory [23].
Further careful observation of the XRD peaks reveals

that the angular separation (Δ2θ) between the orthorhom-
bic 022 and 402 peaks broadens with the reduction in
temperature (Figs. S11,S12 [47]). This broadening in
angular separation with temperature results from the fact
that, as the temperature is reduced, the AFM interaction
between Cr atoms becomes stronger, intensifying the
driving force. As a result, the orthorhombic lattice param-
eters a shrinks and b expand further with the reduction in
temperature (Fig. S13 [47]), as predicted in theory [23,24].
Thereby, these combined electrical, magnetic, and struc-
tural characterizations strongly prove the anisotropic mag-
netic stress-driven metal-insulator transition in CrN.
To further engineer the magnetic exchange interactions,

nonmagnetic cations magnesium (Mg) and aluminium (Al)

FIG. 3. ω − 2θ XRD diffractogram of 240 nm thick relaxed
(a)–(c) and 10 nm thick strained (d)–(f) CrN film on STO
substrates at 300, 250, and 100 K, respectively. At 300 K, only
the rocksalt phase is present. At 250 K, both the rocksalt
and orthorhombic phases are present. At 100 K, only the
orthorhombic phase is present.

FIG. 2. M-vs-T plot of 10 nm CrN deposited on STO substrate
showing the onset of paramagnetic-to-antiferromagnetic transi-
tion around 320K.M-vs-H hysteresis curve at 2 K is shown in the
inset. (b) Exchange bias in 10 nm=10 nm CrN=Mn3AlN bilayer
system on STO substrate. The temperature-dependent exchange
bias is shown in the inset. The exchange bias value increases with
the decrease in temperature.
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are introduced on the Cr site and ∼240 nm Cr0.96Mg0.04N
and Cr0.96Al0.04N solid-solution alloys are deposited on
(001) MgO substrates. Temperature-dependent resistivity
measurements (Figs. S24,S25 [47]) show that compared to
the phase-pure CrN, Cr0.96Mg0.04N and Cr0.96Al0.04N
exhibit a much lower MIT temperature of ∼220 K, with
a hysteresis temperature of ∼2–3 K. Since the inclusion of
nonmagnetic Mg and Al at Cr sites reduces the exchange
interactions, the phase transition temperature also decreases
accordingly. The structural transition of Cr0.96Mg0.04N film
is further determined with Raman spectroscopy measure-
ment. Since the first-order Raman scattering is symmetry
forbidden in the rocksalt structure, no Raman peak is
observed in Cr0.96Mg0.04N as the temperature is lowered
from 350 to 220 K [Fig. S25(b) [47] ]. However, below
220 K, as the structure transitions from rocksalt-to-
orthorhombic, corresponding Raman peaks [43,48] started
to appear.
Finally, the first-principle DFT calculations [52] of CrN

with AFM2
½11̄0� spin configuration is performed to explain

the experimental results. A Hubbard U correction of 4.5 eV
for the Cr d electrons is utilized to account for the onsite
Coulomb interactions (A detailed discussion on computa-
tional method is included in Supplemental Material [47].).
Band structure and density of states calculation show a tiny
indirect gap of 0.2 eV in CrN [Fig. 4(a), S27 [47] ],
consistent with the earlier reports [37,53,54]. Cr-Cr
nearest-neighbour AFM exchange-energy of −10.6 meV is
calculated in the relaxed configuration [55]. The exchange-
interaction energy (J1) increases linearly when compressive-
strain is considered and decreases when tensile-strain is
considered in theoretical modeling [Fig. 4(b)].
After the theoretical calculation, the obtained J1 value is

used in spin dynamics simulation [56] to calculate the
magnetic susceptibility and specific heat across the TN
[Figs. 4(c) and 4(d)]. The sharp peak in the temperature-
dependent susceptibility and specific heat corresponds to
the TN . The calculated TN of unstrained CrN appears at
∼290 K, slightly higher than the measured phase transition
temperature of ∼278 K. However, when compressive and
tensile strain is considered in the calculations, the shift in
the TN follows the same trend as experimental observa-
tions, which verifies the underlying magnetic stress-driven
phase transition mechanism.
In conclusion, our work presents conclusive experi-

mental evidence about the existence and manipulation of
the magnetic stress-driven metal-insulator phase transi-
tion. This mechanism contrasts with the strong Coulomb
repulsion or Peierls instability-driven metal-insulator
phase transition that most conventional materials exhibit.
Furthermore, demonstration of the room temperature
metal-insulator phase transition in prototype CrN by tuning
the magnetic stress would enable the practical utilization of
the transition phenomena in ambient conditions. Therefore,
this work marks a paradigm shift in the physical origin of

the metal-insulator phase transition mechanism and will
open up a new research direction to study the coupled
magneto-structural-electrical phase transition phenomena
in magnetic semiconductors. We believe this will also
broaden the choice of materials exhibiting metal-insulator
transitions by introducing new classes of materials beyond
oxides and sulfides.
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