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The newly discovered Ruddlesden-Popper bilayer La3Ni2O7 reaches a remarkable superconducting
transition temperature Tc ≈ 80 K under a pressure of above 14 GPa. Here we propose a minimal bilayer
two-orbital model of the high-pressure phase of La3Ni2O7. Our model is constructed with the Ni-3dx2−y2 ,
3d3z2−r2 orbitals by using Wannier downfolding of the density functional theory calculations, which
captures the key ingredients of the material, such as band structure and Fermi surface topology. There are
two electron pockets, α, β, and one hole pocket, γ, on the Fermi surface, in which the α, β pockets show
mixing of two orbitals, while the γ pocket is associated with Ni-d3z2−r2 orbital. The random phase
approximation spin susceptibility reveals a magnetic enhancement associated with the d3z2−r2 state.
A higher energy model with O-p orbitals is also provided for further study.
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Introduction.—Recently, the newly discovered
Ruddlesden-Popper bilayer perovskite nickelate La3Ni2O7

shows a remarkable high superconducting transition tem-
perature of Tc ≈ 80 K with an applied pressure of over
14 GPa [1]. This breakthrough will undoubtedly cause a stir
in the field of high-Tc superconductivity long after the
discovery of suprate [2–7] and iron-based [8–11] super-
conductors, as well as the recent infinite layer nickelate
superconductors [12–30]. At ambient pressure, La3Ni2O7

exhibits an orthorhombic structure of the Amam space
group [31]. With increasing pressure, it undergoes a
structure transition to the Fmmm space group, which
possesses a more regular AA-stacking structure with an
apical Ni-O-Ni bond approaching 180° [see Figs. 1(f) and
1(g) in Ref. [1] ]. The most crucial effect of the pressure is
to drive a metallic transition of the correlated electronic
ground state. The resistance measurement shows that,
above Tc, La3Ni2O7 undergoes a transition from weakly
insulating to metallic phase [see Figs. 3(a) and 4 in
Ref. [1] ], which is further evidenced in the density func-
tional theory (DFT) calculation as the emergence of an
additional Ni-d3z2−r2 state near Fermi energy (EF) [1,32].
Such a state is essentially associated with the σ bonding that
connects Ni-d3z2−r2 and apical O − pz orbitals, further
indicating a rather different situation in La3Ni2O7 in which
the unconventional pairing might be promoted by such a
coupling degree [33–38]. Therefore, it is of vital impor-
tance to understand the effective low-energy physics.
In this Letter, we propose a bilayer two-orbital model and

an eleven-orbital model for the high-pressure phase of
La3Ni2O7. Our models are constructed based on Wannier
downfolding of the DFT band structure, which capture the
key feature of the electronic structure atEF and could serve as

a starting point for further strongly correlated calculations
and investigation on the unconventional pairing symmetry.
Electronic model.—To elucidate the electronic structure

of La3Ni2O7 under the high-pressure phase (29.5 Gpa), a
primitive unit cell with two-Ni atoms is adopted. We fix
the experimentally refined lattice parameters [1] and
fully optimize the atomic positions using the DFT as
implemented in the Vienna ab initio simulation package
(VASP) [39,40]. The projector augmented-wave (PAW)
method [41] with a 600 eV plane-wave cutoff is adopted.
The generalized gradient approximation (GGA) of Perdew-
Burke-Ernzerhof form (PBE) [42] is used for the exchange-
correlation functional. In Fig. 1 we show the resulting band

FIG. 1. The DFT band structure and partial density of states of
the high-pressure Fmmm phase of La3Ni2O7. The blue, red,
and green colors represent Ni-dx2−y2 , d3z2−r2 , and O-p states,
respectively.
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structure and partial density of states, which distinctly
shows major Ni-dx2−y2 and d3z2−r2 orbitals near EF. Note
that there appears a hole pocket associating the Ni-d3z2−r2
orbital at the T point. This hole pocket is separated from the
other one on the upper Fermi surface with an energy
∼1.3 eV. This splitting should be attributed to pdσ bonding
between Ni-d3z2−r2 and apical O − pz orbitals.
With the Wannier downfolding [43–45] of the DFT band

structure, we arrive at an effective bilayer two-orbital
model:

H ¼ H0 þHU;

H0 ¼
X
kσ

Ψ†
kσHðkÞΨkσ;

HU ¼ U
X
is

nis↑nis↓

þ
X
iαβ

ðU0 − JδαβÞðniAxαniAzβ þ niBxαniBzβÞ: ð1Þ

Here H0 is the tight-binding Hamiltonian determined
out of our Wannier downfolding, and HU is the
Coulomb interaction term [46]. The basis is defined as
Ψσ ¼ ðdAxσ; dAzσ; dBxσ; dBzσÞT , with the field operator dsσ
denotes annihilation of an s ¼ Ax; Az; Bx; Bz electron with
spin σ. As shown in Fig. 2, A, B label the bilayer, and x, z
label dx2−y2 ; d3z2−r2 orbitals, respectively. For HU, U, U0,
and J are Coulomb integrals of Kanamori parameterization
with each representing intraorbital, interorbital Coulomb
repulsion, and Hund’s coupling, respectively. They are
related by U0 ¼ U − 2J, reflecting Hund’s rule. The matrix
HðkÞ is written as

HðkÞ¼
�

HAðkÞ HABðkÞ
HABðkÞ HBðkÞ

�
;

HAðkÞ¼HBðkÞ¼
�
Tx
k Vk

Vk Tz
k

�
; HABðkÞ¼

�
tx⊥ V 0

k

V 0
k tz⊥

�
; ð2Þ

with

Tx=z
k ¼2tx=z1 ðcoskxþcoskyÞþ4tx=z2 coskx coskyþϵx=z;

Vk¼2txz3 ðcoskx−coskyÞ; V 0
k¼2txz4 ðcoskx−coskyÞ:

Here Tx=z
k represents intralayer intraorbital hopping, and Vk

(V 0
k) represent intralayer (interlayer) hybridization between

dx2−y2 and d3z2−r2 orbitals. The essential hoppings

tx=z1 ; tx=z2 ; txz3 ; t
xz
4 are demonstrated in Fig. 2(a). Note that

the minus sign appearing in the structure factor of txz3 ; t
xz
4 is

associated with the orbital symmetry of two eg sectors.
To better illustrate the low-energy state, it is advisable to

further simplify the above model. Recall that the mirror
symmetry of the bilayer structure allows us to define the
bonding and antibonding states Φ�kσ ¼ ðcx�kσ; c

z
�kσÞT with

cx=z�kσ ¼ ð1= ffiffiffi
2

p Þðdx=zkAσ � dx=zkBσÞ, in which the Hamiltonian
acquires a block-diagonal form

H0 ¼
X
kσ

�
Φ†

þkσHþðkÞΦþkσ þΦ†
−kσH−ðkÞΦ−kσ

�
;

H�ðkÞ ¼
�

Tx
k � tx⊥ Vk � V 0

k

Vk � V0
k Tz

k � tz⊥

�
: ð3Þ

In this representation, the bonding and antibonding states of
two d3z2−r2 orbitals at EF are manifested as the component
Tz
k � tz⊥ which define a splitting energy 2jtz⊥j, as shown

along the M-Γ path in Fig. 3 (where Vk; V 0
k ¼ 0).

With the value of tight-binding parameters listed in
Table I, we show in Fig. 3 the resulting band structure
and Fermi surface. The model reproduces the DFT band
structure well at EF. Also, site energies are slightly adjusted
to coincide with the nominal d7.5 configuration [1,32]. In
Fig. 3(b) we can see two electron pockets, α, β, and one
hole pocket, γ. The α, β pockets show mixing of the orbital
content, while the γ pocket is featured as a dominated
d3z2−r2 state. Note that the amplitude of tz⊥ ¼ −0.635 is
even larger than that of the intralayer nearest-neighbor

(a) (b)

FIG. 3. The band structure (a) and Fermi surface (b) of the
bilayer two-orbital model. The color bar indicates the orbital
weight of dx2−y2 and d3z2−r2 .

(a) (b)

FIG. 2. Schematic of the bilayer La3Ni2O7 lattice with hopping
parameters. (a) Only Ni-dx2−y2 (red), d3z2−r2 (blue) orbitals are
shown. The blue, red, and green lines indicate hoppings for the
bilayer two-orbital model. Their values are listed in Table I.
(b) Extra O-p orbitals are drawn as green shapes, with in-plane
px, py and apical pz; p0

z; p00
z . Some of the p0

z; p00
z are hidden for

clarity. The hopping parameters are given in Table II.
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hopping tx1 ¼ −0.483, by a ratio of 1.3. This strong
interlayer coupling indicates a possible different situation
of the unconventional paring as compared to cuprates,
and is reminiscent of a theoretical bilayer-Hubbard
model [47,48], in which an s�-wave pairing could
be promoted via interlayer coupling. But there is a key
difference here. In La3Ni2O7, t

z⊥ only appears in the d3z2−r2
sector, while for dx2−y2 the amplitude tx⊥ ¼ 0.005 is
marginal. Hence, the influence from interlayer coupling
to the NiO2 plane can only be achieved via hybridizations
Vk; V 0

k. It would be interesting to see how pairing symmetry
is affected in this situation. We would also like to point out
that, however, due to the asymmetry of the orthorhombic
structure of this compound, the γ pocket from DFT is
slightly stretched along the nodal direction.
To explicitly consider the physics ofO-p orbitals, we intro-

duce a higher energymodel (eleven-orbital model). The basis
is Ψ ¼ ðdAx; dAz; dBx; dBz; pAx; pAy; pBx; pBy; pz; p0

z; p00
z ÞT ,

with four more in-plane, pAx; pAy; pBx; pBy, and three apical
pz; p0

z; p00
z , as shown in Fig. 2(b). The tight-binding para-

meters of the model are listed in Table II, which requires six
hopping parameters including necessary pd; pp overlaps.
The resulting band structure covers an energy range akin to
that of Fig. 1 and can also reproduce the main features at EF.
Moreover, we found a strong hopping of t6 ¼ 1.366 between
d3z2−r2 and two apical p0

z; p00
z that lie outside the bilayer,

which manifest as two hole baths for the NiO2 plane and
could be further integrated out in a Löwdin downfolding
technique [49]. The model will be useful for further study of

the electronic correlation in the dynamic mean field theory
framework.
Spin susceptibility.—To determine the magnetic response

of the material, we investigate the spin susceptibility of our
model, which is defined as

χstS ðq; iωnÞ ¼
1

3

Z
β

0

dτeiωnτhSsðq; τÞ · Stð−q; 0Þi: ð4Þ

Here s; t ¼ Ax; Az; Bx; Bz label orbitals, and the spin
operator is defined as Sqs ¼ 1

2

P
kαβ d

†
ksασαβdkþqsβ with σ

the Pauli matrix. By using wick’s theorem, we expand
Eq. (4) to obtain the bare (noninteracting) susceptibility

χstS ðq; iωnÞ ¼ −
1

2N

X
mn

fðϵnkÞ − fðϵmk Þ
iωn þ ϵnk − ϵmkþq

× hmjkþ qtihkþ qsjmihnjksihktjni;

with m, n the band indices and fðϵÞ ¼ 1=ðeϵ=T þ 1Þ the
Fermi-Dirac function. hksjmi represents the eigenvector
relating s, m states at wave vector k.
Under the random phase approximation, the spin sus-

ceptibility is calculated by

χst;RPAS ðq; iωnÞ ¼ ½I − χstS ðq; iωnÞΓ�−1χstS ðq; iωnÞ; ð5Þ

with the interaction vertex defined as

Γ ¼
�
1

1

�
⊗

�
U J=2

J=2 U

�
:

In Fig. 4 we show the constant energy slices of
χRPAS ðq;ω ¼ 0Þ. Here we use U ¼ 3, J ¼ 0.4 eV. T ¼ 0

is applied since the temperature only trivially brings a
broadening to the spectrum. Figure 4(a) is the total χRPAS ¼P

s;t χ
st;RPA
S corresponding to the experimental measurable.

As can be seen, the magnetic signal shows a ringlike
enhancement. To unveil the origin, we show in Figs. 4(b)–
4(d) the orbital-resolved χst;RPAS , from which we can see a
dominated intraorbital d3z2−r2 scattering reflecting Fermi
surface nesting of the γ pocket. While the signals from the
other two channels are weaker, consistent with the strong
orbital mixing in α, β pockets. Our result could be further
tested in the magnetic measurement.
Discussion.—Thediscovery of the high transition temper-

ature superconductor La3Ni2O7 represents a major break-
through in the field of nickletate superconductivity. Our
DFT calculations demonstrate that there are two electron
pockets,α, β, and one hole pocket, γ, on the Fermi surface, in
which the α, β pockets exhibit mixing of orbitals, while the γ
pocket features a dominated d3z2−r2 content. In comparison
to the bulk Ni-112, which has not yet demonstrated a finite
Tc, La3Ni2O7 exhibits several distinguishing features that
may be crucial to superconductivity. First, the less correlated

TABLE I. Tight-binding parameters of the bilayer two-
orbital model. The hoppings t are demonstrated in Fig. 2(a).
ϵx, ϵz are site energies for Ni-dx2−y2 ; d3z2−r2 orbitals, respectively.
The units are eV.

tx1 tz1 tx2 tz2 txz3

−0.483 −0.110 0.069 −0.017 0.239

tx⊥ tz⊥ txz4 ϵx ϵz

0.005 −0.635 −0.034 0.776 0.409

TABLE II. Tight-binding parameters for Wannier downfolding
of the eleven-orbital model. ϵx=z are site energies for
dx2−y2=d3z2−r2 , and ϵx=yp for in-plane px=py, and ϵzp=p0=p00 for
apical pz=p0

z=p00
z . See Fig. 2(b) for details. The units are eV.

t1 t2 t3 t4 t5 t6

−1.564 0.747 −1.625 0.577 −0.487 1.366

ϵx ϵz ϵx=yp ϵzp ϵzp0=p00

−1.057 −1.161 −4.936 −4.294 −3.772
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La-5d derived bands are expelled from the Fermi level,
diminishing the hybridization between the Ni-3dx2−y2 and
La-5d orbitals that impedes superconductivity. Furthermore,
the site energy difference between Ni-dx2−y2ðϵxÞ and

O-pðϵx=yp Þ in La3Ni2O7 is estimated as Δ≡ ϵx − ϵx=yp ¼
3.88 eV (see Table II). This value is smaller than that of
RNiO2 (4.4 eV) [16], which could potentially contribute to
the high Tc in La3Ni2O7 in the context of pairing based on
the Zhang-Rice singlet state [50]. The inclusion of the
d3z2−r2 orbital near Fermi level in La3Ni2O7, however, may
have complex implications for superconductivity. The large
density of state of the d3z2−r2 orbital can provide new phase
space for the potential pairing of electrons [51]. However,
the presence of multiple orbitals on the Fermi level may also
lead to competition between pairings with different sym-
metries, such as the competition between the s� and dx2−y2
wave pairing. Regarding the filling factors of the relevant
orbitals, we note that in the case of a d7.5 configuration ofNi,
if d3z2−r2 is considered to roughly have the same occupation
number as of dx2−y2 , then both orbitals have about 0.75
electrons per site, corresponding to 25% hole doping. It is
notable that the oxygen deficiency in realistic materials may
effectively reduce the hole doping level in the eg orbitals of
Ni 3d, resulting in enhanced superconductivity. Finally, we
acknowledge that the d3z2−r2 orbitals exhibit much weaker
hybridization with in-plane oxygen compared to its dx2−y2
counterpart, which necessitates in-depth investigations
into its strong interaction effects and its influence on
superconductivity. The question about the role of the

electron-phonon coupling, which becomes specifically
important since the superconductivity in La3Ni2O7 is found
under pressure, should also be clarified in future studies.
Conclusion.—In conclusion, we have introduced a min-

imal bilayer two-orbital model and an eleven-orbital model
for the Ruddlesden-Popper bilayer La3Ni2O7 under pres-
sure. The tight-binding parameters are obtained byWannier
downfolding of the DFT calculations, which reproduce the
band structure and Fermi surface well. The spin suscep-
tibility is studied using the RPA method, which shows that
the magnetic signal majorly comes from d3z2−r2 . These
models provide important means to study the electronic,
magnetic, orbital, and superconducting properties of the
material under pressure.
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Note added.—Recently, we noticed several later works
[52–55] showing consistency with our results and Ref. [56]
adopted our model to reveal a possible s�-wave pairing in
the material.
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