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Nonlinearity-induced asymmetric transport (AT) can be utilized for on-chip implementation of
nonreciprocal devices that do not require odd-vector biasing. This scheme, however, is subject to a
fundamental bound dictating that the maximum transmittance asymmetry is inversely proportional to the
asymmetry intensity range (AIR) over which AT occurs. Contrary to the conventional wisdom, we show
that the implementation of losses can lead to an increase of the AIR without deteriorating the AT. We
develop a general theory that provides a new upper bound for AT in nonlinear complex systems and
highlights the importance of their structural complexity and of losses. Our predictions are confirmed
numerically and experimentally using a microwave complex network of coaxial cables.
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Introduction.—Asymmetric or nonreciprocal devices
such as isolators and circulators are routinely used in
communications, radar and LIDAR technologies, and
integrated photonic circuits at microwave and optical
frequencies [1]. Their operational principle relies on the
violation of reciprocity, which is typically achieved (in
linear structures) by using an odd-vector bias (e.g., an
external magnetic field) [2,3] or by violating the time
invariance via a spatiotemporal modulation of the propa-
gating medium [4–15]. Utilizing nonlinearities as a means
to achieve asymmetric transport (AT) is a promising
alternative approach [16–41]. In this framework, an upper
bound for the maximum transmittance asymmetry has been
achieved based on time-reversal symmetry considerations
[34]. These studies analyze AT in simple nonlinear systems
[34–37] without paying attention to the geometrical com-
plexity of the underlying structures, nor to the presence of
losses that violates time-reversal symmetry. The challenge
now is to develop a general theory of nonlinearity-induced
AT in typical complex wave settings that lack geometric or
time-reversal symmetries.
Here, we develop a general theory of AT from complex

wave scattering systems without any geometric sym-
metries, where nonlinearities coexist with losses. We
confirm our predictions by utilizing an experimental plat-
form of wave transport in complex systems, i.e., complex
networks of coaxial cables (graphs) [42–63]; see Fig. 1(a).
Specifically, we have derived a general expression for the
upper bound of the transmittance asymmetry occurring in
nonlinear wave media in terms of losses and other
structure-specific characteristics of the underlying linear
system. The necessary conditions to exceed the trans-
mission asymmetry bound given by the corresponding
lossless analogs [34–37] are identified. Furthermore, our

analysis highlights an intimate relation between the AT
properties of a nonlinear wave system and the structural
asymmetry factor (SAF) that is determined by the geo-
metric complexity of the underlying linear structure. We
find that the SAF dictates the asymmetric intensity range
(AIR) defined as the ratio of input powers injected from
opposite directions which leads to the same transmittance
[see Fig. 1(b)]. We demonstrate experimentally that the
presence of losses does not degrade the transmission
asymmetry at all—instead, it enhances the AIR.
Experimental implementation.—A nonlinear microwave

graph consists of coaxial cables (bonds) coupled together
via n ¼ 1;…; N T junctions (vertices). For the tetrahedron
graph shown in Fig. 1(a), N ¼ 4. We have chosen the
length of the bonds not to be commensurable—thus
avoiding spectral degeneracies. Additionally, we made sure
that our choice of bond lengths allows us to measure a
sufficient number of resonances in the frequency range
where the nonlinearity is activated. The local nonlinearity is
always incorporated at the Nth vertex. It is implemented by
substituting the T junction with a cylindrical resonator
which is inductively coupled to a metallic ring that is short
circuited to a diode; see inset of Fig. 1(a). The nonlinear
resonator is designed to operate at 6.1–6.5 GHz. It is
coupled with the rest of the graph via “kink” antennas (see
Supplemental Material [64]) [65]. The system is coupled to
transmission lines (TLs) attached to n ¼ 1, 2 vertices of the
graph. Each transmission line supports a single propagating
mode and it is connected to a port of the vector network
analyzer.
Scattering theory for nonlinear graphs.—The theoretical

analysis utilizes a standard open quantum graph description
[44] with the modification that the Nth vertex is now
nonlinear. We assume that the bond lengths lB are taken
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from a box distribution centered around some mean value l̄.
The position xnm ≡ x on bond B ¼ ðn;mÞ is x ¼ 0ðlBÞ on
vertex nðmÞ. The scattering field on each bond satisfies the
Helmholtz equation

�
d2

dx2
þ k2 þ k2

�
λn þ δnNfðjϕðαÞ

N j2Þ�δðxÞ
�
ψ ðαÞ
B ¼ 0; ð1Þ

where ψ ðαÞ
B ðxÞ is the electric potential difference at position

x, k ¼ ωnr=c is the wave number of the propagating wave
with angular frequency ω, nr is the relative index of
refraction of the coaxial cable, c is the speed of light, λn
is the dielectric coefficient at node n, δnN is the Kronecker

delta function, and the superscript α ¼ 1, 2 indicates the
lead from which the incident wave has been injected. The
losses in the coaxial cables are modeled by a complex-
valued refraction index nr, while losses at the vertices

are modeled by complex λn. The scattering field ψ ðαÞ
B ðxÞ is

expressed in terms of its value at the vertices ψ ðαÞ
B ðx ¼ 0Þ ¼

ϕðαÞ
n and ψ ðαÞ

B ðx ¼ lbÞ ¼ ϕðαÞ
m . Finally, fðjϕðαÞ

N j2Þ is the
nonlinear dielectric coefficient at vertex N. For Kerr non-

linearities, we have fðjϕðαÞ
N j2Þ ¼ χKjϕðαÞ

N j2, while for satu-

rable nonlinearities we have fðjϕðαÞ
N j2Þ ¼ z1=½1þ χsjϕðαÞ

N j2�
with χK , χs, and z1 being complex variables.
The wave function at a vertex n satisfies the continuity

and the current conservation relations which can be written
as (see Supplemental Material [64])

ðM þMNL þ iWTWÞΦðαÞ ¼ 2iWTIðαÞ; ð2Þ

where we have introduced the scattering vector field

ΦðαÞ ¼ ðϕðαÞ
1 ;ϕðαÞ

2 ;…;ϕðαÞ
N ÞT . The two-dimensional vector

IðαÞ has components IðαÞμ ¼ Aμδα;μ and describes the ampli-
tude of the incident field of the channel α that has been used
to inject the wave. Finally, Wα;n ¼ δα;n is a 2 × N matrix
describing the connection between the αth lead and the
vertices n ¼ 1, 2. The N × N matrix M,

Mnm ¼
(
λnk −

P
l≠n

Anl cot kLnl n ¼ m

Anm csc kLnm n ≠ m;
ð3Þ

incorporates information about the metric and the con-
nectivity of the graph, where A is the adjacency matrix
having elements zero (whenever two vertices are not
connected) and one (whenever two vertices are connected)

[44]. Finally, ðMNLÞn;m ¼ kfðjϕðαÞ
N j2Þδnmδn;N incorporates

the nonlinearity at the n ¼ N vertex.
Using Eq. (2) we find that the field intensity at the

nonlinear vertex xα ≡ jϕðαÞ
N j2 is a root of the equation (see

Supplemental Material [64])

xα
h
jbj2 þ jkfðxαÞj2 − 2Re

�
kb�fðxαÞ

�i ¼ 4jAαcαj2; ð4Þ

where the coefficients b ¼ bðfMnmg; fWα;ngÞ, and cα ¼
cαðfMnmg; fWα;ngÞ depend on the metric and connectivity
of the linear graph solely, which are encoded in the
matrix elements of the matrix M [see Eq. (3)], and on
the coupling matrix W (for the precise definition, refer to
the Supplemental Material Eqs. (SC.18) and (SC.19),
respectively). In addition, cα incorporates the information
about the TL α ¼ 1, 2 which is used to inject the incident
wave. Further manipulations allow us to turn Eq. (4) to a
cubic algebraic equation for xα which can be solved exactly
using Cardano’s formula (see Supplemental Material).
Substituting the value of xα back in Eq. (2) allows us to

Port 1 Port 2

(a)

(b) (c)

(d) (e)

FIG. 1. (a) A microwave tetrahedron graph. The coaxial cables
are connected by T or double T junctions at each of the vertices
n ¼ 1, 2, and 3. Vertex N ¼ 4 consists of three kink antennas
coupling to a cylindrical dielectric resonator that is inductively
coupled to a ring antenna which is short circuited with a nonlinear
diode (see left-hand inset). (b) Measured transmittance T1 (from
port 1 to port 2) and T2 (from port 2 to port 1) at a fixed frequency
(ν ¼ 6.327 GHz) as a function of the input power showing
asymmetric transport. (c)–(e) The transmittance difference ΔT ≡
T2 − T1 for an incident wave (of the same amplitude and
frequency) as a function of frequency and input power. (c) Ex-
perimental data. Simulations using (d) a simple graph, and (e) a
resonant-graph modeling.
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evaluate the rest of the components of the scattering vector

field ΦðαÞ. Specifically, the field amplitude ϕðαÞ
nβ associated

with the vertex nβ ≠ α is

ϕðαÞ
nβ ¼ 2iAα

�
qαβ −

cαcβ
b − kfðxαÞ

�
; ð5Þ

where the constant q1;2 ¼ q2;1 ¼ q ¼ qðfMnmg; fWα;ngÞ
encodes information about the structure (metric and con-
nectivity) of the graph and the vertices where the TLs are
attached (see Supplemental Material [64]).
Evaluation of nonlinear transmittance.—The continuity

condition at the vertex n enforces that the transmitted wave
has the same amplitude given by Eq. (5). Consequently, the

transmittance is Tα≡
��ϕðαÞ

nβ =Aα

��2. For real-valued fð��ϕðαÞ
N

��2Þ,
it takes the simple form

Tα ¼ 4jqj2
h
Xα − Re

� c1c2
qkImðbkÞ

�i2 þ h
1 − Im

� c1c2
qkImðbkÞ

�i2
X2
α þ 1

; ð6Þ

where Xα ¼ f½Reðb=kÞ − fðxαÞ�=Imðb=kÞg (see Supple-
mental Material for a generalization to complex-valued
nonlinearities [64]). Figure 1(b) shows the measured trans-
mittance T1 (T2) from TL 1 (2) to TL 2 (1) for a fixed
frequency as a function of the input power. We find a
strong nonlinear dependence of the transmissions on the
input power.
Transmittance asymmetry.—Equation (6) indicate that

two waves, with the same amplitude A1 ¼ A2 and wave
number k, that are injected from different ports α ¼ 1, 2 can
lead to T1 ≠ T2, provided that X1 ≠ X2. The latter occurs
when the roots xα of Eq. (4) that describe the field
intensities at the nonlinear vertex differ for α ¼ 1, 2 due
to the dependence of cα on the incident TL α [see rhs of
Eq. (4)]. This nonreciprocal response does not require any
form of external bias: the excitation field itself acts as a bias
and triggers the system into a “high-transmission” or “low-
transmission” state depending on the incident TL. In
Fig. 1(c) we show the measured transmission difference
ΔT ¼ T2 − T1 as a function of the input power and
frequency ν. These measurements compare nicely with
the results from the graph modeling Eqs. (2) and (3); see
Fig. 1(d). More refined modeling that takes into consid-
eration the resonant nature of the nonlinear vertex provides
an even better description of the asymmetric transport; see
Fig. 1(e). We will refer to it as resonant-graph modeling
(see Supplemental Material [64]).
Further analysis of Eq. (4) allows us to identify the

amplitude range for which asymmetric transport occurs.
Specifically, from the right-hand side of this equation we
conclude that the scattering field intensity xα at the non-
linear vertex is the same for a left (α ¼ 1) and a right
(α ¼ 2) incident wave as long as they satisfy the relation
jA1c1j2 ¼ jA2c2j2. The latter equality shows that the field

intensity xα at the nonlinear vertex (and therefore the
nonlinear electric potential) for injected waves from port
2 is equal to the one from port 1, if the input power from
port 1 is SAF≡��c2=c1��2 times larger than that from port 2.
This condition leads to the same transmission coefficients
for waves injected from different ports. The ratio of these
input powers that lead to the same transmission defines the
AIR≡max

	��A1=A2

��2; ��A2=A1

��2
 [see Fig. 1(b)]. Within
the AIR, the graph largely breaks Lorentz reciprocity, since
the transmission levels in opposite directions are different
for the same input power and frequency. It follows
that AIR ¼ SAF.
Bounds for transmission asymmetry.—The maximum

transmittance can be used as an upper bound for the
transmission asymmetry since T ≥ 0 in all cases and,
therefore, ΔTmax ¼ Tmax − Tmin ≤ Tmax.
From Eq. (6) we derive an upper bound for the trans-

mittance by maximizing Tα with respect to Xα. For real-
valued nonlinearities we have

Tmax ¼ 2jqj2
�
jΛj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΛj2 þ 4½1 − ImðΛÞ�

q

þ jΛj2 þ 2½1 − ImðΛÞ�


; ð7Þ

where Λ ¼ 	
c1c2=½qkImðb=kÞ�
 (for a more general case

of complex nonlinearities, see Supplemental Material [64]).
Equation (7) together with Eq. (SD.10) of the Supplemental
Material are the main results of this Letter. They provide
guidance on the dependence of AT on the parameter Λ
which encodes the structural characteristics of the graph.
The special case of lossless graph is retrieved from the

above expression for ImðΛÞ ¼ 1 (see Supplemental
Material). In this case, Eq. (7) simplifies to

Tmax ¼
4 × SAF

ðSAFþ 1Þ2 : ð8Þ

This expression is nicely confirmed from our numerical
data for a lossless graph with Kerr (open blue circles) and
saturable nonlinearities (not shown) in Fig. 2(a). A further
investigation reveals that there is an interlinked relation
between the maximum transmittance achieved for a specific
incident power and the SAF (or equivalently of the AIR
[34,36,37]). This is reflected in the three examples shown
in the inset of Fig. 2(a), where we report the transmittances
T1, T2 associated with the same incident wave being
injected from channels α ¼ 1 and α ¼ 2, respectively,
versus the incident power. We find that an increase in
the AIR (=SAF) is associated with a decrease in the
maximum transmittance and vice versa as expected
by Eq. (8).
Necessary conditions for the violation of an upper bound

for asymmetric transport.—Equation (8) has been previ-
ously derived as the upper bound of nonlinear AT. Its
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derivation assumed nonlinear Fano resonators with time-
reversal symmetry (i.e., no losses) and has utilized the
coupled-mode theory framework [34,36,66]. Here, how-
ever, we have derived Eq. (8) for a generic nonlinear wave
system, where SAF explicitly refers to specific bulk
asymmetries pertaining to the topology and metrics of
the graph. Given the technological importance of AT, it is
natural to investigate and establish (necessary) conditions
which enforce the violation of Eq. (8) and allow for an
enhanced AIR (for a fixed Tmax) or enhanced transmission
asymmetry bound (for a fixed AIR) given by Eq. (7).
As discussed above, Eq. (8) does not hold when losses

are introduced in the system. However, the lossy elements
need to be strategically placed either on the bonds of the
graph or at vertices not connected to the two TLs or the
nonlinear vertex; i.e., nloss ≠ 1; 2, N (see Supplemental
Material [64]). In the opposite case of losses located at the
nonlinear vertex, a simple renormalization of the non-
linearity (so that it incorporates the lossy term) results in an
upper bound given by Eq. (8). Similarly, when the losses
are implemented on a vertex connected to the TLs, a new
bound is found which is a stricter version of Eq. (8) (see
Supplemental Material).
We find that the interference between (at least) two

nearby resonance modes can result in a violation of Eq. (8)
as in the case of AT due to the presence of a magnetic field
[67] (see Supplemental Material). Finally, from Eq. (7) we
speculate that if ImðΛÞ < 1, the lossy graph configurations
might violate the lossless bound given by Eq. (8). Detailed
numerical analysis has confirmed that the above inequality
is a necessary but not sufficient condition for violating the
lossless limit (see Supplemental Material [64]).

A numerical example where the violation of Eq. (8)
occurs for a tetrahedron graph with losses at the vertex
n0 ¼ 3 is shown in Fig. 2(b). Such targeted arrangement of
loss is effectively equivalent to a new graph configuration
where a third (fictitious) channel is attached to the node n0,
thus changing the topology of the graph and indirectly
affecting the coupling between this vertex and the other
vertices. While Eq. (8) is violated for intermediate values of
loss, it is still respected in the two limiting cases of zero and
very large losses at the n0 vertex. The second limit is
understood as an impedance-mismatch phenomenon: due
to the large imaginary “electric potential,” the n0 vertex is
decoupled from the rest of the graph, which now acts as a
lossless system with N − 1 vertices and thus again satisfies
the bound of Eq. (8). In Fig. 2(b) we demonstrate the
trajectory of the maximum transmittance versus AIR as the
losses at the vertex n0 ¼ 3 of a tetrahedron graph increase.
The numerical data (light blue cycles) for Tmax nicely
match the theoretical results (dashed black line) of Eq. (7),
indicating that the deterioration of Tmax for increasing
losses occurs at a slower rate than the enhancement of AIR.
At some loss strength, the AIR reaches its maximum value.
Further increase of loss results in a decrease (increase) of
AIR (Tmax) toward its “impedance-mismatch” limit.
In Fig. 2(c) we report our measurements (purple tri-

angles) for the graph of Fig. 1, with uniformly distributed
losses at the bonds of the graph. A violation of Eq. (8) is
evident and it is qualitatively supported by our simulations
(green cycles) using a resonant-graph modeling for the
same bond configurations. The difference between the
simulations and the experiment is primarily due to
dispersion in the real and imaginary part of the refraction
index and other loss sources, such as the T junctions, which
have not been taken into account. The insets in Fig. 2(c)

FIG. 2. Transmittance versus structural asymmetry factor (SAF) or asymmetric intensity range (AIR). (a) Lossless graph. The insets
show the transmittances versus input intensity from each of the two leads (red and blue lines) for three different SAF graph configurations.
(b) Lossy graph with losses on node n0 ¼ 3. The light blue circles indicate maximum transmittance for a graph configuration with
increasing loss (along the direction of the red arrow) on node 3. The insets correspond to different losses for a fixed graph configuration.
(c) Measurements (purple triangles) and simulations (green circles) for an ensemble of graphs with bond losses and a lossy saturable
nonlinearity. The ensemble has been generated by interchanging the bonds of the graph. The insets showmeasurements corresponding to
the same SAF but different maximum transmission values. The black solid and dashed lines in (a)–(c) are theoretical predictions while the
colored circles are simulations occurring at various wavelengths and graph configurations. The data acquisition has been performed for
three different graph configurations and for a frequency range ν∈ ½6.1 GHz; 6.5 GHz� with a resolution of δν ¼ 0.4 MHz.
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report the experimental transmittances T1, T2 for two cases
with the same SAF—the upper one exceeds the bound,
while the lower case corresponds to a configuration that
respects the bound (see black arrows).
All the above conclusions have been further confir-

med by a nonlinear random matrix theory (NLRMT)
which can model typical nonlinear chaotic cavities (see
Supplemental Material [64]). An example of the viola-
tion of Eq. (8) for overlapping resonances is shown
in Fig. 3.
Conclusions.—Using a generic nonlinear complex wave

system, we have established experimentally and theoreti-
cally an exact expression for the upper bound of trans-
mittance asymmetry in the presence of losses. We have
identified necessary conditions for enhanced asymmetry
intensity range (for a fixed Tmax) or enhanced transmission-
asymmetry bound (for a fixed AIR). It will be interesting to
extend these studies toward a universal statistical descrip-
tion of transmission asymmetries using NLRMT. Another
interesting direction would be the derivation of the bounds
Eqs. (7) and (8) in the case of microwave graphs using
semiclassical tools. This will allow us to unveil the
influence of nonuniversal features (e.g., wave scars), which
are present in any typical dynamical system, to the non-
linearity-induced AT.
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