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Studies of noncommutative gauge theory have mainly focused on noncommutative spacetimes with
constant noncommutative structure, with little known about actions for noncommutative 4D Yang-Mills
theory beyond this case. We construct an action for Yang-Mills theory on a quadratically noncommutative
spacetime, i.e., of quantum-plane type, obtained from a Drinfeld twist, with star-gauge symmetry. Applied
to supersymmetric Yang-Mills theory, this gives a candidate AdS=CFT dual of string theory on a related
deformation of AdS5 × S5, which is expected to be integrable in the planar limit.
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Noncommutativity between spacetime coordinates is a
likely feature of quantum gravity [1], actively studied
from numerous angles [2,3]. In string theory, noncommu-
tative gauge theory appears in the low energy dynamics of
open strings [4], and thereby the AdS=CFT correspon-
dence [5–7]. Despite the formal and phenomenological
relevance of noncommutative gauge theory, it is not clear
how to write actions to all orders in the noncommutativity
when going beyond the case of constant noncommutativity.
In this Letter, we consider a noncommutative Drinfeld-
twist deformation of Minkowski space, with quadratically
coordinate-dependent noncommutativity, and construct an
all-order action for Yang-Mills theory with star-gauge
symmetry. Beyond providing a first example of a non-
commutative Yang-Mills theory action with quadratic
noncommutativity, our choice of deformation is motivated
by the AdS=CFT correspondence and integrability. Applied
to maximally supersymmetric Yang-Mills theory, our
noncommutative deformation provides a concrete candi-
date gauge theory dual of a particular Yang-Baxter de-
formation [8–10] of the famously integrable AdS5 × S5

superstring [11,12], as conjectured in [13]. This opens the
door to investigating integrability for a range of novel
planar noncommutative gauge theories.
We consider noncommutative field theory in the

usual spirit of Weyl quantization, trading noncommuting
field operators for a noncommutative product—the star
product—between commutative fields [14,15]. Our star
product is obtained from a Drinfeld twist, whereby it
automatically comes with clear algebraic properties and

a natural differential calculus [16], and twists rather than
plainly breaks Poincaré symmetry [17,18]. The original
Groenewold-Moyal noncommutative deformation can be
viewed as a twist, and it is well-known how to construct a
Yang-Mills action in this case [15]. For general twists,
however, it is not clear how to define a suitable dual field
strength tensor and construct an action for noncommutative
Yang-Mills theory. For example, the approaches of [19,20]
for κ-Minkowski space, were necessarily perturbative, and
only solved to leading order in the noncommutativity. To
our knowledge, the only nonconstant case known to all
orders is the Uð1Þ Yang-Mills theory studied in [21] for a
particular twist with linear noncommutativity, where
standard Hodge duality suffices.
We show how a twisted version of Hodge duality allows

us to define a noncommutative Yang-Mills action for a
twist based on two commuting Lorentz generators, with a
noncommutative structure with quadratic coordinate
dependence. Our construction moreover provides a broader
framework that covers all Poincaré-based twist deforma-
tions of Minkowski space, including non-Abelian ones,
whose r matrices are unimodular [22].
Given our motivations in AdS=CFT, we also discuss

how to couple our theory to (adjoint) matter, and define
quadratically noncommutative maximally supersymmetric
Yang-Mills theory. We then discuss its possible AdS=CFT
interpretation, as a would-be amalgamation of the famous
Groenewold-Moyal [6,7] and real-β Lunin-Maldacena
deformations [23], with its gravity dual similarly given
by a particular T-duality shift–T-duality (TsT) transforma-
tion of the superstring on AdS5 × S5. This comes with
caveats in the form of completely broken supersymmetry
and a potentially unbounded string coupling, deserving
further investigation, but we expect a notion of duality to
survive in the planar limit at the very least. Moreover, both
sides of this potential duality admit a nontrivial infinite
boost limit, where these caveats do not apply.
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Lorentz-deformed Minkowski space.—In deformation
quantization, a noncommutative spacetime is described
via a regular spacetime whose function algebra is equipped
with a noncommutative (star) product. The noncommuta-
tive product we consider for functions on R1;3 is based on
the Drinfeld twist

F ¼ e
iλ
2
ðM01⊗M23−M23⊗M01Þ ð1Þ

built from two commuting Lorentz generators, M01 and
M23, with Mμν ¼ iðxμ∂ν − xν∂μÞ. It defines our noncom-
mutative star product via

fðxÞ ⋆ gðxÞ≡ μ½F−1ðfðxÞ; gðxÞÞ�; ð2Þ
where μ½hðxÞ; zðxÞ� ¼ hðxÞzðxÞ is the ordinary pointwise
product of functions, and λ is our deformation parameter.
We will refer to this as the Lorentz twist, or deformation. In
contrast to the familiar Groenewold-Moyal star product
associated to

FGM ¼ e−
iθμν
4
ð∂μ⊗∂ν−∂ν⊗∂μÞ;

where θ is a constant antisymmetric matrix, the bidiffer-
ential operator appearing in the exponent of our twist has
nontrivial coordinate dependence [24].
Our star product is associative because M01 and M23

commute [25]. Its noncommutative structure is

xμ⋆xν ¼ Rσ
μ
ρ
νxρ⋆xσ; ð3Þ

with 24 nonzero components for R,

R0
0
0
0 ¼ 1; R0

0
2
2 ¼ cosh λ; R0

1
2
3 ¼ −i sinh λ; ð4Þ

and others obtained by index permutation symmetries of
the twist [Eq. (1)], namely 2 ↔ 3 or ð0; 1Þ ↔ ð2; 3Þ
combined with a sign change of λ, and 0 ↔ 1.
As our goal is gauge theory, we need differential

calculus, now suitably twisted [16]. Using standard differ-
ential calculus on Minkowski space we define

dxμ ⋆ f ¼ μ½F−1ðdxμ; fÞ�; ð5Þ

where the vector fieldsM01 andM23 act via Lie derivatives,
summarized as

dxμ⋆f ¼ dxνF̄ ν
μðfÞ; ð6Þ

with

F̄ ν
μ ¼

0
BBBBBB@

cosh λM23

2
− sinh λM23

2
0 0

− sinh λM23

2
cosh λM23

2
0 0

0 0 cos λM01

2
− sin λM01

2

0 0 sin λM01

2
cos λM01

2

1
CCCCCCA

ν

μ

:

Commuting functions through forms gives rise to

dxμ⋆f ¼ Rν
μðfÞ⋆dxν; ð7Þ

with the R matrix Rν
μ ¼ F̄ν

ρF̄ρ
ν. Both R and F̄ are vector-

field-valued elements of the Lorentz group, in the sense that,
raising and lowering indices with the usual Minkowski
metric,

Rμ
νRρ

ν ¼ F̄μ
νF̄ρ

ν ¼ δρμ: ð8Þ
We also define a star-wedge product,

dxμ ∧⋆ dxν ¼ μ̂½F−1ðdxμ; dxνÞ�; ð9Þ
where μ̂½a; b� ¼ a ∧ b is the regular wedge product.
Concretely,

dxμ ∧⋆ dxν ¼ F̄σ
μ
ρ
νdxσ ∧ dxρ; ð10Þ

with F̄σ
μ
ρ
ν ¼ Rσ

μ
ρ
νjλ→λ=2. We will mostly work with star

forms

ω ¼ ω ⋆
μν…ρ ⋆ dxμ ∧⋆ dxν ∧⋆ … ∧⋆ dxρ; ð11Þ

but occasionally will also express them as regular forms:

ω ¼ ωμν…ρdxμ ∧ dxν ∧ … ∧ dxρ: ð12Þ
Our star forms are totally R-antisymmetric, e.g.,

dxμ ∧⋆ dxν ¼ −Rρ
μ
σ
νdxσ ∧⋆ dxρ: ð13Þ

We will use the ordinary exterior derivative, which has the
desired product rule

dðω ∧⋆ χÞ ¼ dω ∧⋆ χ þ ð−1Þpω ∧⋆ dχ: ð14Þ
for p and q forms ω and χ, respectively, as it commutes with
Lie derivatives. Under (conventional) conjugation we
have ω ∧ ⋆ χ ¼ ð−1Þpqχ̄ ∧ ⋆ ω̄.
Our star product is graded cyclic under an integral,

Z
ω ∧⋆ χ ¼ ð−1Þp

Z
χ ∧⋆ ω; ð15Þ

when χ ∧⋆ ω is a top form, upon integration by parts [26].
Hodge duality.—To define our twisted Hodge star we

take a natural generalization of the Levi-Civita symbol,

dxμ ∧⋆ dxν ∧⋆ dxρ ∧⋆ dxσ ¼ ϵμνρσd4x; ð16Þ
where the volume form d4x ¼ dx0 ∧⋆ dx1 ∧⋆ dx2 ∧⋆
dx3 ¼ dx0 ∧ dx1 ∧ dx2 ∧ dx3 is not deformed. By explicit
evaluation of the star-wedge products, we find that ϵ is
graded cyclic, and has 32 nonzero components given by

ϵ0123 ¼ −ϵ0132 ¼ ϵ0231 ¼ −ϵ0321 ¼ 1;

ϵ1212 ¼ −ϵ0202 ¼ ϵ1313 ¼ −ϵ0303 ¼ i sinh λ;

ϵ0312 ¼ −ϵ0213 ¼ cosh λ; ð17Þ
plus others related by graded cyclicity.
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In regular Hodge duality we can freely permute indices
on the Levi-Civita symbol for signs, giving many equiv-
alent definitions of a dual form. The appropriate choice in
our twisted setting is

� dxμ1 ∧⋆ … ∧⋆ dxμk

¼ ð−1ÞσðkÞ
ð4 − kÞ! εμkþ1…μ4

μ1…μkdxμ4 ∧⋆ … ∧⋆ dxμkþ1 ; ð18Þ

where σðpÞ denotes the signature of the reversal of p
objects, i.e., σð1Þ ¼ σð4Þ ¼ 0, σð2Þ ¼ σð3Þ ¼ 1. The re-
versed index contraction in the dual form is essential.
Restricted to basis star forms, this twisted Hodge star
commutes with Lie derivatives along vector fields in the
Poincaré algebra, and hence with our star product. This
allows us to consistently extend it star linearly to arbitrary
forms, where it continues to commute with Poincaré Lie
derivatives and our star product.
Our Hodge star has all typical properties, appropriately

twisted [22]. It preserves R antisymmetry and reality of star
forms, and for a p form ω we have

� � ω ¼ −ð−1Þpω: ð19Þ
For equal-degree p forms ω and χ we also have

ω ∧⋆ �χ ¼ ð−1Þp � ω ∧⋆ χ

¼ ð−1ÞσðpÞþ1p!ω⋆
μ…ν⋆Rκ

μ…Rρ
νχ⋆ρ…κd 4x;

so that
Z

ω ∧⋆ �χ ¼
Z

χ ∧⋆ �ω: ð20Þ

Related to Hodge duality commuting with star products,

½dxμ ∧⋆ dxν ∧⋆ dxρ ∧⋆ dxσ ;⋆ f� ¼ 0; ð21Þ
for any f, following from star commutativity of ϵ and the
volume form, these being constant and Lorentz invariant
respectively. This implies that ϵ is an invariant of theRmatrix,

ϵτκζϕRτ
μRκ

νRζ
ρRϕ

σ ¼ ϵμνρσ: ð22Þ

A similar form of Hodge duality was discussed for
q-Minkowski space in [27]; see also [28].
Yang-Mills theory.—Coming to Yang-Mills theory, as

gauge transformations are functions, they are affected by the
star product, and it is natural to consider star-gauge trans-
formations [15]. A fundamental field Φ then transforms as

δεΦðxÞ ¼ iεðxÞ ⋆ ΦðxÞ;
under a gauge transformation by ε ∈ h, where h is the Lie
algebra of the gauge group H [29].
Working in terms of forms, we have

dðδεΦÞ ¼ dðiε ⋆ ΦÞ ¼ idε ⋆ Φþ iε ⋆ dΦ;

and we can define the covariant derivative

DΦ ¼ dΦþ iA ⋆ Φ; ð23Þ
with

δεA ¼ dεþ i½ε ;⋆ A�; δεðDΦÞ ¼ iε ⋆ DΦ:

Next we define the field strength tensor

G ¼ dA − iA ∧⋆ A; ð24Þ
which transforms star-covariantly

δεG ¼ i½ε ;⋆ G�:
We now consider a natural deformation of the commutative
Yang-Mills action,

SNC-YM ¼
Z

TrG ∧⋆ �G: ð25Þ

Since our Hodge dual commutes with star products, �G
transforms star covariantly. Since our star product is cyclic
under integration, this action is gauge invariant.
To illustrate this nontrivial point, let us derive the

transformation of �G in components. Starting from

G ¼ G ⋆
μν ⋆ dxμ ∧ ⋆ dxν;

using Eq. (7), we find

δεG ⋆
μν ¼ iε ⋆ G ⋆

μν − iG ⋆
ρσ ⋆ Rμ

ρRν
σε: ð26Þ

The transformation of �G is then

δεð�GÞ¼ iε⋆ ð�GÞ− iG⋆
μνϵ

τλ
ξκ ⋆ dxρ∧⋆ dxσ ⋆Rξ

σRκ
ρR

μ
τRν

λε

¼ i½ε ;⋆ �G�; ð27Þ

where we used Eqs. (8) and (22).
In star components our action reads

SNC-YM ¼
Z

TrG⋆
μν⋆Rρ

μRσ
νG⋆σρd4x: ð28Þ

Expressed in unstarred components, repeated integration
by parts gives

SNC-YM ¼
Z

TrGμνGνμd4x; ð29Þ

where

Gμν ¼ ∂½μAν� − iF̄ρ
κ
σ
τF̄½νjσðAκÞ⋆F̄ρjμ�ðAτÞ; ð30Þ

showing that the kinetic term for the gauge field is
undeformed, while the interaction terms are deformed.
Our action has twisted Poincaré symmetry in the spirit

of [17,18], meaning the following. In the commutative
setting, the Poincaré algebra acts on individual fields via
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Lie derivatives, which by the product rule combine to Lie
derivatives of the Lagrangian [30]. For Poincaré generators
these are total derivatives, leaving the action invariant.
Introducing a coproduct ΔðξÞ ¼ ξ ⊗ 1þ 1 ⊗ ξ for gene-
rators ξ, the product rule takes the form

ξ½μðf; gÞ� ¼ μ½ΔðξÞðf; gÞ�;

with multiple coproducts extending this to products involv-
ing more fields. Our twisted product is similarly compatible
with a twisted coproduct

ξðf ⋆ gÞ ¼ ξfμ½F−1ðf; gÞ�g ¼ μ½F−1ΔF ðξÞðf; gÞ�;

where ΔF ¼ FΔF−1. Since every product in our action is
a star product, letting the Poincaré algebra act (nonlocally)
on products of fields by this twisted coproduct, still re-
sult in a total derivative, and an invariant action. The
twisted Poincaré algebra for our Lorentz twist is discussed
in [31].
Matter fields and supersymmetric Yang-Mills theory.—

We can readily couple our theory to matter. For adjoint
scalars for instance, we can write

SNC-ϕ¼
Z

TrDϕ† ∧⋆ �Dϕþ
Z

Trðϕ† ⋆ ϕÞ⋆ nd4x: ð31Þ

where Dϕ ¼ dϕ − i½A ;⋆ ϕ�. Gauge invariance follows as
for star-Yang-Mills theory.
Working with forms allows us to straightforwardly define

actions, while guessing, e.g., the component forms of
Eqs. (28)–(30) would be difficult. To tackle fermions in
similar spirit, focusing on massless ones for concreteness,

we combine left- and right-handed Weyl spinors ψα and ψ̄ α̇

with Grassmann-valued basis spinors sα and s̄α̇ to form the
Grassmann-evenψ ¼ ψαsα and ψ̄ ¼ ψ̄ α̇sα̇.We then take our
twist to act via the left- and right-handed Weyl representa-
tion of the Poincaré algebra on sα and s̄α̇ respectively. These
spinors play an analogous role to forms in components
resulting in spinor analogues of Eqs. (5)–(10).
We now assemble the usual γ matrices into a convenient

object, taking the Pauli matrices σi, i ¼ 1, 2, 3, and
σ0 ¼ 12×2 to form

σ ¼ σμαα̇sαs̄α̇dxμ ¼ R⋆
μαα̇sα ⋆ s̄α̇ ⋆ dxμ:

Coupled by the Pauli matrices, the transformation proper-
ties of the spinors and one form cancel, making σ Lorentz
invariant, hence star commutative. For adjoint Weyl
fermions we then define the kinetic action

SNC-ψ ¼
Z Z Z

d2sd2s̄Trψ̄ ⋆ σ ∧⋆ �Dψ ; ð32Þ

where Dψ ¼ dψ − i½A ;⋆ ψ �, and the Grassmann integrals
over the basis spinors extract the appropriate components.
Gauge invariance of this action follows as before, since σ is
star commutative. Combined with an adjoint scalar ϕ, we
can form gauge-invariant Yukawa-like interactions such as

Z Z
d2sTrψ ⋆ ϕ ⋆ ψ d4x:

We use these ingredients to define the action for
maximally supersymmetric Yang-Mills theory (SYM) on
Lorentz-deformed R1;3 as

SNC-SYM¼ 1

4g2
Tr

Z
G∧⋆ �GþTr

Z
DϕIJ∧⋆ �DϕIJ−

g2

16
Tr

Z
d4x½ϕIJ ;⋆ϕKL�⋆ ½ϕIJ ;⋆ϕKL�

þTr
Z

d2sd2s̄
Z

ψ̄ I ⋆ σ∧⋆ �Dψ Iþ
ig
2
Tr

Z
d2s

Z
d4xψ I ⋆ ½ϕIJ ;⋆ψJ�−

ig
2
Tr

Z
d2s̄

Z
d4xψ̄ I ⋆ ½ϕIJ ;⋆ ψ̄J�; ð33Þ

where ψ I, I ¼ 1, 2, 3, 4, are the four fermions of SYM, and
the ϕIJ ¼ −ϕJI contain the six real scalars. This deforma-
tion of SYM classically has twisted superconformal sym-
metry [22]. As the dilatation generator commutes with our
twist, this action is conventionally scale invariant.
AdS=CFT.—It is well-known that Groenewold-Moyal

noncommutative SYM has an AdS=CFT dual—the
Maldacena-Russo-Hashimoto-Ithzaki background [6,7]—
obtained by performing a TsT transformation in the
relevant Cartesian directions in the Poincaré patch of
AdS5. It is moreover possible to consider TsT transforma-
tions of S5 to give an AdS=CFT dual—the Lunin
Maldacena background [23]—of the real-β deformation
of SYM, which can be viewed a noncommutative

deformation of SYM in its (global) R-symmetry directions
in line with the corresponding TsT transformation. By
analogy, we can consider the commuting boost and a
rotation associated to our Lorentz deformation, and use the
corresponding TsT transformation to deform AdS5 × S5,
with the aim of generating an AdS=CFT dual for our
Lorentz-deformed SYM. This results in the background

ds2¼−dρ2þdr2þdz2

z2
þ ρ2dα2þr2dθ2

z2þ λ̃2ρ2r2=z2
;

B¼−λ̃
ρ2r2

z4þ λ̃2ρ2r2
dα∧dθ; e2ðϕ−ϕ0Þ ¼ z4

z4þ λ̃2ρ2r2
;

ð34Þ
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in (the analog of) Rindler coordinates ðρ; αÞ inside the light
cone of the ðx0; x1Þ plane, and polar coordinates ðr; θÞ in
the ðx2; x3Þ plane, of AdS5 in the Poincaré patch. It is
further supported by nontrivial Ramond-Ramond forms.
This background has the usual scale symmetry of AdS, as
well as boost and rotational symmetries in the ðx0; x1Þ and
ðx2; x3Þ plane respectively, but the rest of the conformal
symmetry of AdS is broken by the deformation.
All such TsT backgrounds can be viewed as Yang-Baxter

deformations of the AdS5 × S5 superstring [8–10]; see
Ref. [32]. From this perspective, the possibility that our
Lorentz-deformed SYM is a dual to string theory in the
background (34) is part of the broader conjecture of [13] on
the AdS=CFT interpretation of Yang-Baxter deformed
strings; see also [33]. In particular, the string sigma model
for Eq. (34) has the same twisted symmetries as our
Lorentz-deformed SYM, adding support in favor of a
duality, at least in the planar limit.
While the TsT analogy and the matching of planar

symmetry structures between gauge and string theory are
certainly promising, the question of whether our Lorentz-
deformed SYM is truly dual to string theory in the back-
ground (34), in particular beyond the planar limit, deserves
further investigation. For instance, while we can readily use
a TsT transformation to give a brane geometry that naively
supports the desired duality, the physical details of the
decoupling limit can be subtle. For example, for constant
noncommutativity, while the spacelike and lightlike cases
are fine [34], timelike noncommutativity results in a non-
commutative open string, rather than gauge theory [35,36].
Our Lorentz deformation mixes these cases, appearing
spacelike inside the light cone in the (0,1) plane of the
brane geometry, but timelike outside it, and this decoupling
limit needs careful analysis. Related to this, while the dilaton
(string coupling) of Eq. (34) is bounded in the presented
patch, i.e., inside the light cone in the ðx0; x1Þ plane of the
Poincaré patch, it can blow up in its complement, the region
of the Poincaré patch obtained by the analytic continuation
ρ → iρ of Eq. (34). Another important point is that the above
background preserves no supersymmetry, which may well
allow for instabilities in the full string theory. A related and
relevant example here is the three-parameter generalization
of the Lunin-Maldacena background of [37] without super-
symmetry, where a full duality to the corresponding defor-
mation of SYM is not clear. This case, however, also nicely
illustrates how remnants of a correspondence definitely
survive at the planar level; see, e.g., [38]. We similarly
expect remnants of a duality to our type of noncommutative
gauge theory to survive at the planar level, at least.
Finally, let us note that our deformation admits an

interesting limit on both sides of the proposed duality,
where the above concerns disappear. Namely, by combin-
ing an infinite Lorentz boost in the ðx0; x3Þ plane with an
appropriate scaling of the deformation parameter(s) and
coordinates along the lines of [39], the background (34)

becomes one which preserves 16 supercharges, has a
bounded string coupling, and arises from a decoupling
limit with an everywhere nontimelike B field. On the
SYM side, the noncommutative product is modified to one
associated to the light-cone version of our twist [Eq. (1)],
with the 0 and 3 directions replaced by a common null
direction, as will be described in more detail in [22]. This of
course matches the structure predicted by the open string
side of the decoupling limit. In this Letter, we focused on
the Lorentz deformation as the overarching example, with
its pleasing algebraic structure based on the Cartan gene-
rators of the Lorentz algebra.
Outlook.—We have constructed an action for noncom-

mutative Yang-Mills theory with star-gauge symmetry for
the Lorentz twist with quadratic noncommutativity. Our
construction relies on properties of the twist and R matrix,
combined with our nontrivial twisted Hodge duality, and,
for SYM, on our fermionic extension of twisted differential
calculus.
There are various open questions surrounding our

deformation at the quantum level—for instance, regarding
UV/IR mixing and its presumable absence in SYM, and the
fate of twisted symmetry. At the classical level, non-
commutative gauge theories admit an underlying L∞
algebraic structure [40,41], and it would be interesting to
investigate this for our deformation and contrast it with the
braided noncommutative gauge theories of [41,42].
Applied to SYM, the Lorentz deformation gives a natural

candidate for an AdS=CFT dual of a related Yang-Baxter
deformation of the AdS5 string. Our construction in fact
extends to all noncommutative spacetimes described by
Drinfeld twists based on the Poincaré algebra, with unim-
odular rmatrix, providing candidate gauge theory duals for
a large class of Yang-Baxter deformations of the AdS5
string [22]. There are important open questions regarding
the status of this general conjectured duality, in particular in
cases without supersymmetry or an unbounded dilaton,
beyond the planar limit.
We expect planar Lorentz-deformed SYM to be integrable,

based on the integrability of its proposed string dual, and its
formal similarity to the real β deformation. At the classical
level this should take the form of Yangian invariance [43,44],
now twisted similarly to [45].At the quantum level,we should
find a spectral problem described by an integrable spin chain,
similar to the famous dilatation operator of undeformed
SYM [46]. The Lorentz deformation is particularly natural
in this regard, as it preserves dilatation symmetry. We have
defined a suitable related spectral problem in planar Lorentz-
deformed SYM, and are in the process of extracting its
integrable structure [47], which we expect to relate to the
twisted spin chain of [48], building on a planar equivalence
theorem [22] in the spirit of Filk [49]. We hope this will pave
the way to integrable AdS=CFT for general (homogeneous)
Yang-Baxter deformations of the AdS5 string and its lower
dimensional cousins.
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