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We show that supersymmetric supergravity solutions with an R-symmetry Killing vector are equipped
with a set of equivariantly closed forms. Various physical observables may be expressed as integrals of
these forms, and then evaluated using the Berline-Vergne-Atiyah-Bott fixed point theorem. We illustrate
with a variety of holographic examples, including on-shell actions, black hole entropies, central charges,
and scaling dimensions of operators. The resulting expressions depend only on topological data and the
R-symmetry vector, and hence may be evaluated without solving the supergravity equations.
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Introduction.—Starting with the seminal work of [1,2],
localization has proved to be an invaluable tool both in
mathematics and in supersymmetric quantum field theory.
These ideas have notably been applied to the infinite-
dimensional supersymmetric path integral (see Ref. [3] for
a review, and [4]), but localization in finite dimensions also
plays a role. For instance, the localization over instanton
moduli spaces in [7], or in the analysis of anomalies and
anomaly polynomials. In this Letter we show that locali-
zation also plays a role in supergravity. The general
structure we uncover explains, unifies, and generalizes
many previous results in the literature.
The supergravity theory or relevant part of the geometry

will be assumed to have even dimension d ¼ 2n. We
require that supersymmetric solutions are equipped with
an R-symmetry Killing vector ξ, constructed as a bilinear in
the Killing spinor ϵ

ξ≡ ϵ̄γμγ�ϵ∂μ: ð1Þ

Here γ� is either 1 or the chirality operator, depending on
the theory considered, with γμ generating the Clifford
algebra, so fγμ; γνg ¼ 2gμν. With an R symmetry, the
space of solutions to the Killing spinor equation generically
has one complex dimension, generated by ϵ, and one can
then argue (see, e.g., [8]) that Lξϵ ¼ iqϵ, where we refer to
the constant q as the R charge.
In such a setup it is natural to introduce the equivariant

exterior derivative

dξ ≡ d − ξ ⌟ : ð2Þ

This acts on differential forms and squares to minus the Lie
derivative d2ξ ¼ −Lξ. Indeed, in this setting differential
forms of degree r are constructed naturally as bilinears
Ψr ≡ ϵ̄γðrÞγ�ϵ, where γðrÞ ≡ ð1=r!Þγμ1���μrdxμ1 ∧ � � � ∧ dxμr .
From our above assumptions on ξ we immediately have
LξΨr ¼ 0. The framework of G structures and intrinsic
torsion implies that the Killing spinor equation for ϵmay be
recast as a set of differential and algebraic equations on
bilinear forms and fields in the theory (see Ref. [9]). In
general these equations involve bilinears constructed using
the charge conjugate ϵ̄c as well as the Dirac conjugate ϵ̄, but
only the latter will appear in the present work; the former
are charged under ξ when q ≠ 0, and are thus not invariant
under Lξ.
In the sequel wewill be interested in finding polyformsΦ,

constructed as polynomials in the bilinears Ψr and fields in
the supergravity theory, which by virtue of theKilling spinor
equation and equations of motion satisfy the equivariantly
closed condition

dξΦ ¼ 0: ð3Þ

Notice that since ξ is itself a bilinear, the bilinear degree of
the (r − 2)-form component Φr−2 is necessarily one more
than Φr. Moreover, since only the Dirac bilinears Ψr are
used to constructΦ, we will only need to impose a subset of
the supersymmetry equations and equations of motion to
ensure (3) holds. In this sense such structures exist “partially
off-shell,” and this will also play a role. As we will see, a
number of such polyforms can exist in a given theory.
Given Φ satisfying (3) we may integrate it over a

ξ-invariant closed submanifold M, and apply the Berline-
Vergne-Atiyah-Bott [10,11] fixed point formula. Denoting
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an embedded connected component of the fixed point set as
f∶F ↪ M, where ξ ¼ 0, we have

Z
M
Φ ¼

X
F

codimF¼2k

1

dF

ð2πÞkQ
k
i¼1 ϵi

Z
F

f�ΦQ
k
i¼1

h
1þ 2π

ϵi
c1ðLiÞ

i : ð4Þ

Here for simplicity [12] we have assumed that the weights
ϵi of the linear action of ξ on the normal bundle NF to F in
M are generic, so that NF ¼ ⨁k

i¼1Li splits as a sum of
complex line bundles, with c1ðLiÞ denoting the first Chern
classes. The normal space to a generic point on F is taken to
be R2k=Γ, where Γ is a finite group of order dF ∈N, so that
(4) also applies to orbifolds.
What is perhaps surprising is that many BPS physical

quantities take the form (4), and furthermore this structure
then allows one to evaluate “off-shell,” without imposing or
solving the supergravity equations. In the remainder of this
Letter we give various illustrative examples, both recover-
ing known results and giving some new results, leaving
comments on further applications and generalizations for
the discussion section.
4d minimal gauged supergravity.—We consider super-

symmetric solutions to 4d, N ¼ 2 minimal gauged super-
gravity. The bosonic content is Einstein-Maxwell theory
with a negative cosmological constant. In Euclidean sig-
nature the holographically renormalized action is

I ¼ −
1

16πG4

�Z
M
ðRg þ 6 − F2Þvolg þ

Z
∂M

2Kvolh

−
Z
∂M

ð4þ RhÞvolh
�
: ð5Þ

HereM is a four-manifold, with boundary ∂M with induced
metric h, vol denote Riemannian volume forms, R Ricci
scalars, and F ¼ dA is the Maxwell field strength. The
Gibbons-Hawking-York term involves the trace of the
extrinsic curvature K, while the final counterterm renorm-
alizes the on-shell action for asymptotically locally AdS
solutions [13]. The Newton constant in dimension d will be
denoted Gd.
Supersymmetric solutions to the Euclidean theory were

analyzed in [14]. From the Killing spinor ϵ one may con-
struct the following real bilinear forms

S≡ ϵ̄ϵ; P≡ ϵ̄γ5ϵ; ξ♭≡−iϵ̄γð1Þγ5ϵ; U≡ iϵ̄γð2Þϵ: ð6Þ
Here γ5 ≡ γ1234, and the one-form ξ♭ is dual to ξ, given by
(1) with γ� ¼ −iγ5. We then define the polyform

Φ ¼ Φ4 þΦ2 þΦ0

≡ ð3volg þ F ∧ �FÞ þ ðU þ SF − P � FÞ − SP; ð7Þ

where � denotes the Hodge dual. As indicated in the
introduction, this is a polynomial in the bilinear forms (6)

and supergravity form fields, withΦ2j being degree 2 − j in
bilinears. The Killing spinor equation implies certain
differential conditions on these forms, and using the results
in [14] one easily shows that Φ satisfies the equivariantly
closed condition (3).
Using the Einstein equation the on-shell action (5) is

given by

I ¼
�

1

ð2πÞ2
Z
M
Φ
�

π

2G4

þ boundary terms: ð8Þ

We cannot directly apply (4) in this case, since M has a
boundary. However, following the way in which the fixed
point theorem is proven, we notice that the integrand Φ is
exact on the complement of the fixed point set and the
boundary. Then, assuming [15] ξ has no fixed points on the
boundary one can integrate by parts, leading to a boundary
term on ∂M together with contributions around the fixed
point set in the interior of M. The (divergent) boundary
contribution exactly cancels with the boundary integrals in
(5). This was shown by explicit computation in [14], but is
also expected since the result should be Weyl invariant
and for this theory there is no such boundary quantity;
equivalently, we cannot construct a finite Weyl invariant
counterterm [17]. Thus, from (4) the remaining fixed point
contribution in the interior of M gives

I ¼
�X

fixed
points

Φ0

ϵ1ϵ2
þ
X
fixed
Σ

Z
Σ

Φ2

2πϵ1
−
Φ0c1ðLÞ

ϵ21

�
π

2G4

: ð9Þ

Here L is the normal bundle to the surface Σ in M, and we
note that Φ0 is necessarily constant over Σ.
Following [14] we may write P ¼ S cos θ, where

kξk ¼ Sj sin θj. Since the spinor square norm S is neces-
sarily nowhere zero (see Ref. [8] for a general argument), it
follows that at a fixed point set θ ¼ 0 or π, and hence
correspondingly P ¼ �S, so that ϵ is necessarily of fixed
chirality with γ5ϵ ¼ �ϵ at such a fixed locus.
Examining first an isolated fixed point, on the tangent

space we may write ξ ¼ P
2
i¼1 ϵi∂φi

, where ∂φi
rotate each

copy of R2
i in R4 ¼ R2

1 ⊕ R2
2. Notice here that the overall

orientation on R4 is fixed, but the orientations of each R2
i

factor are not; this means that the pair ðϵ1; ϵ2Þ is only
defined up to overall sign. A local analysis of the bilinears
near such a fixed point relates S to the norm of the self-dual
and anti-self-dual parts of the two-form dξ♭, leading to the
general formula S ¼ jϵ1 ∓ ϵ2j=2 [14]. A similar argument
leads to S ¼ −ϵ1=2 for a fixed surface, while formulas in
[14] immediately give

Z
Σ
Φ2 ¼ 2

Z
Σ
SF ¼ −ϵ1

Z
Σ
F: ð10Þ

A global analysis of spinors near to the fixed surface
Σ ¼ Σ�, which have charge 1

2
under A, then implies [14]
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1

2π

Z
Σ�

F ¼ −
1

2

Z
Σ�

c1ðTΣ�Þ ∓ c1ðLÞ; ð11Þ

where
R
Σ�

c1ðTΣ�Þ ¼ 2ð1 − g�Þ is the Chern number of
the tangent bundle of the Riemann surface Σ� of genus g�,
and substituting into (9) gives

I ¼
�X

fixed
points�

∓ ðϵ1 ∓ ϵ2Þ2
4ϵ1ϵ2

þ
X
fixed
Σ�

Z
Σ�

�
1

2
c1ðTΣ�Þ

∓ 1

4
c1ðLÞ

��
π

2G4

: ð12Þ

This is the main result of [14], derived here as a simple
application of (4).
6d Romans F(4) gauged supergravity.—A similar struc-

ture exists in 6d Romans F(4) gauged supergravity, where
for the Euclidean theory we follow [18,19]. We work in
an Abelian truncation, where in addition to the metric the
bosonic content of the theory has a scalar field X, Maxwell
field strength F ¼ dA, all of which are real, and an
imaginary two-form potential B.
From the Killing spinor ϵ one may construct the

following bilinear forms

S≡ ϵ̄ϵ; P≡ ϵ̄γ7ϵ; ξ♭ ≡ ϵ̄γð1Þϵ;

Y ≡ iϵ̄γð2Þϵ; Ỹ ≡ iϵ̄γð2Þγ7ϵ; ð13Þ
where γ7 ≡ iγ123456 and the one-form ξ♭ is dual to ξ, given
by (1) with γ� ¼ 1. Using these we then define the
polyform Φ ¼ Φ6 þΦ4 þΦ2 þΦ0, where

Φ6 ≡ 4

9

2þ 3X4

X2
volþ 1

3
X−2F ∧ �F þ i

3
B ∧ F ∧ F;

Φ4 ≡
ffiffiffi
2

p

3
ðXPÞX−2 � F −

2
ffiffiffi
2

p

3
X � Ỹ −

ffiffiffi
2

p

3
F ∧ X−1Y

þ 1ffiffiffi
2

p ðXSÞF ∧ F þ 2
ffiffiffi
2

p
i

3
ðXPÞB ∧ F;

Φ2 ≡ −
2

3
PY þ 2i

3
ðXPÞ2Bþ 2ðXSÞðXPÞF;

Φ0 ≡
ffiffiffi
2

p
ðXSÞðXPÞ2: ð14Þ

Notice that Φ2j has bilinear degree 3 − j. The differential
equations satisfied by (13) may be found in [19], and using
these one can show that Φ satisfies the equivariantly closed
condition (3).
The on-shell action may be written as

I ¼
�

1

ð2πÞ3
Z
M
Φ
�

π2

2G6

þ boundary terms; ð15Þ

where the full set of boundary counterterms may be found
in [18]. Similar to the case of 4d minimal gauged super-
gravity, for this theory there are again no finite Weyl
invariant counterterms. Thus, assuming that the fixed point

set lies within the interior of M, the boundary terms will
cancel leaving only a fixed point contribution in the
interior. It is then straightforward to write down an explicit
expression for the on-shell action using localization. For
brevity, we just give the result for the class of solutions in
which there are only isolated fixed points:

I ¼
X
fixed
points

� ðϵ1 þ ϵ2 þ ϵ3Þ3
ϵ1ϵ2ϵ3

π2

4G6

; ð16Þ

where R6 ¼⊕3
i¼1 R

2
i , and as commented in the previ-

ous section only the overall orientation is fixed. Here we
have used the fact that at a fixed point set again jPj ¼ S,
together with the local analysis in [19] which shows that
ðXSÞjfixedpoint ¼ ðϵ1 þ ϵ2 þ ϵ3Þ=

ffiffiffi
2

p
, in appropriate orienta-

tion conventions for each R2
i . Having chosen such con-

ventions, the orientation on R6 then either agrees with the
fixed orientation or not, which we write as a � sign in (16).
Remarkably, we have recovered the conjectured result

for the on-shell action given in [18]. This conjecture was
known to hold for at least three different families of
examples, including the nonrotating black hole solutions
in [20] (with hyperbolic space horizons), but here we
have obtained a general proof, which goes beyond these
examples.
As a further illustration, we show that (16) correctly

gives the on-shell action and hence entropy of super-
symmetric rotating black hole solutions in this theory.
We analyze the complex branch of supersymmetric black
hole solutions studied in [21]. The spacetime M has the
topology R2 × S4, and the R-symmetry Killing vector is

ξ ¼
X2
i¼1

i
ωi

β
∂φi

þ 2π

β
∂φ3

: ð17Þ

Here ωi, i ¼ 1, 2 are (complex) angular velocity chemical
potentials, and we have embedded S4 ⊂ R2

1 ⊕ R2
2 ⊕ R,

with ∂φi
rotating the R2

i factors, i ¼ 1, 2, while
φ3 ¼ 2πτ=β, with τ the Euclidean time circle, of period β.
For generic values of parameters the fixed point set consists
of the north and south poles of the S4 horizon. These give
an equal contribution, and (16) (with an overall plus sign)
gives the on-shell action

I ¼ π½2π þ iðω1 þ ω2Þ�3
4ω1ω2G6

: ð18Þ

This agrees with the result in [21], after taking into account
the fact that the AdS radius in our conventions is
l ¼ 3=

ffiffiffi
2

p
. The entropy of the black hole may then be

computed via a Legendre transform, extremizing

S ¼ −I −
X2
i¼1

ωiJi −
l
3
ð−2πiþ ω1 þ ω2ÞQ; ð19Þ
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over the chemical potentials ωi, where Ji,Q are the angular
momenta and electric charge, respectively.
AdS5 ×M6 solutions.—In this section we consider

supersymmetric AdS5 solutions to 11d supergravity, as
analyzed in [22]. The 11d metric takes the warped product
form

ds211 ¼ e2λðds2AdS5 þ ds2M6
Þ; ð20Þ

where we take AdS5 to have unit radius, and will assume
thatM6 is compact without boundary. The four-form fluxG
and function λ are pullbacks from M6.
Denoting ϵ ¼ ϵþthere in [22], we have bilinears on M6:

1 ¼ ϵ̄ϵ; sin ζ ≡ −iϵ̄γ7ϵ; ξ♭ ≡ 1

3
ϵ̄γð1Þγ7ϵ;

Y ≡ −iϵ̄γð2Þϵ; Y 0 ≡ ϵ̄γð2Þγ7ϵ; ð21Þ

where γ7 ≡ γ123456. There are some immediate differences
with the applications in the previous sections: the spinor
necessarily has constant norm, which we take to be 1, but
there is instead a warp factor function e2λ. We have also
normalized the Killing vector ξ so that the R charge is
q ¼ 1

2
. In the notation of [22] then ξ ¼ ∂ψ . An important

role is played by the function

y≡ 1

2
e3λ sin ζ; ð22Þ

which was used as a canonical coordinate in [22].
We find the following collection of equivariantly closed

forms under dξ

Φ≡ e9λvolþ 1

12
e9λ � Y −

1

36
ye6λY −

1

162
y3;

ΦG ≡G −
1

3
e3λY 0 þ 1

9
y;

ΦY ≡ e6λY þ 1

3
y2: ð23Þ

We emphasize that closure under dξ uses the differential
conditions on the Dirac bilinears only, which is a strict
subset of the equations in [22]. Also, since ϵ here has unit
norm the bilinear degrees in (23) are less transparent,
although one could choose to keep this norm arbitrary. The
a central charge for such a solution is [23]

a ¼ 1

2ð2πÞ6l9
p

Z
M6

Φ; ð24Þ

where lp is the 11d Planck length; this then localizes
using (4).
As an example, let us consider the near-horizon limit

of N M5-branes wrapped on a spindle. The full super-
gravity solutions were constructed in [24], with M6 being

the total space of an S4 bundle fibered over a spindle
Σ ¼ WCP1

½nþ;n−�. The latter is topologically a two-sphere,

but with conical deficit angles 2πð1 − 1=n�Þ at the poles.
We write the R-symmetry vector as

ξ ¼
X2
i¼1

bi∂φi
þ ε∂φ3

; ð25Þ

where bi and ε are constants, arbitrary at this stage, which
define the Killing vector. Here ∂φi

rotate the two copies of
R2

i in S4 ⊂ R2
1 ⊕ R2

2 ⊕ R, while ∂φ3
is a lift of the vector

field that rotates the spindle, where we use the construction
of such a basis in [25].
Consider first fixing one of the poles on Σ, say the plus

pole with orbifold group Znþ , and consider a linearly
embedded S2i ⊂ R2

i ⊕ R ⊂ R5 in the (covering space of
the) fiber over it. The homology class of this S2i is trivial, so
it follows that

0 ¼
Z
S2i

ΦY ¼ 2π

b�i

1

3
½ðyþNÞ2 − ðyþS Þ2�; ð26Þ

where the N and S subscripts refer to the poles in the fibre
sphere S4, and b�i are the weights of the Killing vector at
these poles [i.e., the ϵi in (4)], which we shall determine
below. This immediately implies that jy�N j ¼ jy�S j.
We next consider flux quantization through the fibers

S4=Zn� over the poles of Σ. This reads

N� ¼ 1

ð2πlpÞ3
Z
S4=Zn�

ΦG

¼ 1

ð2πlpÞ3
1

n�

ð2πÞ2
b�1 b

�
2

1

9
ðy�N − y�S Þ: ð27Þ

With N� > 0, this fixes the signs to be y�N ¼ −y�S > 0.
Moreover, from the homology relation between these
cycles we deduce

N ≡ nþNþ ¼ n−N−: ð28Þ

The central charge (24) may then also be computed by
localizing

Z
M6

Φ ¼ −ð2πÞ3
�
1

nþ

ðyþNÞ3 − ðyþS Þ3
162

1

ð−ε=nþÞbþ1 bþ2
þ 1

n−

ðy−NÞ3 − ðy−S Þ3
162

1

ðε=n−Þb−1 b−2

�
: ð29Þ

Using (27) this remarkably simplifies to

a ¼ 9½ðbþ1 bþ2 Þ2 − ðb−1 b−2 Þ2�
16ε

N3: ð30Þ
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This takes a “gravitational block” form (see Ref. [26]),
involving a difference of M5-brane anomaly polynomials
in the numerator, one associated to each � pole of Σ.
In order to evaluate (30) further we need to first describe

the fibration structure in more detail. The normal bundle to
the M5-brane wrapped on Σ is NΣ ¼ Oð−q1Þ ⊕ Oð−q2Þ,
where in order for the total space to be Calabi-Yau (giving a
topological twist) we have

q1 þ q2 ¼ nþ þ n−: ð31Þ
The weights b�i may then be computed using the results in
[25]. We have

b�1 þ b�2 ¼ 1 ∓ ε

n�
; bþi − b−i ¼ −

qi
nþn−

ε; ð32Þ

the first equation coming from the charge of the holomor-
phic (3, 0)-form on the Calabi-Yau, and the second
equation being (3.24) of [25] (with qi ¼ −pthere

i ). We
may then solve these constraints by introducing new
variables ϕi via

b�i ¼ 1

2

�
ϕi ∓ qi

nþn−
ε

�
; ð33Þ

with the constraint

ϕ1 þ ϕ2 ¼ 2þ nþ − n−
nþn−

ε: ð34Þ

Our final central charge is then

a ¼ −
9½ðq2ϕ1 þ q1ϕ2Þðq1q2ε2 þ n2þn2−ϕ1ϕ2Þ�

64n3þn3−
N3: ð35Þ

This derives the conjectured gravitational block formula in
[27], where we have corrected the overall sign. In that
reference it was shown that extremizing a over the variables
ϕi [subject to (34)] gives the central charge as well as
determines the R-symmetry Killing vector of the explicit
supergravity solutions constructed in [24]. Moreover, (35)
agrees off-shell with the trial a-function in field theory,
obtained by integrating the M5-brane anomaly polynomial
over the spindle.
This extremization is also explained by our gravity

formalism: we have imposed a subset of the supersymmetry
equations to obtain (35). Substituting this back into the
action, one then extremizes the resulting expression over
any remaining degrees of freedom to obtain the on-shell
result. This is the same general idea used in [28,29], and
will be discussed further in the present context in [30].
Finally, let us consider the conformal dimensions of

chiral primary operators in the dual SCFT that are asso-
ciated with M2-branes wrapped over the copies of the
spindle ΣN , ΣS at the poles of the S4. We have the general

result [23]

ΔðΣÞ ¼ 1

ð2πÞ2l3
p

Z
Σ
e3λY 0; ð36Þ

where Σ is calibrated by Y 0. Since the latter is always closed
when restricted to Σ, ΦG in (23) defines an equivariantly
closed form on Σ, and localization gives

ΔðΣNÞ¼
−1

ð2πÞ2l3
p

�
1

nþ

2π

ð−ε=nþÞ
yþN
3
þ 1

n−

2π

ðε=n−Þ
y−N
3

�
;

¼3ðbþ1 bþ2 −b−1 b
−
2 Þ

2ε
N¼−

3ðq2ϕ1þq1ϕ2Þ
4nþn−

N; ð37Þ

with the same result for ΣS (up to orientation). Evaluating
this on the extremal values ϕ�

i , ε
�, one can verify the result

agrees with that computed using the explicit supergravity
solutions in [24].
Similar calculations reproduce central charges and scal-

ing dimensions for many other classes of AdS5 ×M6

solutions, including all those in [22], the M5-branes
wrapped on general Riemann surfaces in [31], and also
new results for which explicit supergravity solutions have
not been constructed [30]. One only needs to input
topological data for the solutions, as we have done above.
Discussion.—The general structure we have uncovered

in supergravity is ripe for many further applications and
generalizations. We certainly expect analogous results to
hold for more general supergravity theories, including
coupling to matter multiplets, and including higher deriva-
tive corrections (see, in particular, [32–34]).
We have focused on supergravity geometries in even

dimensions, but generalizations to odd dimensions are also
possible. This should lead to a derivation of entropy
functions for supersymmetric black holes in diverse dimen-
sions, generalizing our derivation of the on-shell action (18)
and entropy function (19) (see also [35]), and also
gravitational block formulas that have been discovered
in GK geometry [25,36], and generalizations thereof. The
latter is very much related to the computation of anomaly
polynomials in field theory, and it would be interesting to
make contact with the gravitational approach in [37]. We
will report on many of these topics in the near future [30].
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