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General relativity minimally coupled to a massive, free, complex scalar field, is shown to allow
asymptotically flat solutions, nonsingular on and outside the event horizon, describing two spinning black
holes (2sBHs) in equilibrium, with coaxial, aligned angular momenta. The 2sBHs configurations bifurcate
from solutions describing dipolar spinning boson stars. The BHs emerge at equilibrium points diagnosed
by a test particle analysis and illustrated by a Newtonian analog. The individual BH “charges” are mass and
angular momentum only. Equilibrium is due to the scalar environment, acting as a (compact) dipolar field,
providing a lift against their mutual attraction, making the 2sBHs (h)airborne. We explore the 2sBHs
domain of solutions and its main features.
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Introduction.—The equilibrium two-body problem pro-
vides a theoretical window into the nonlinear interactions
between compact objects, in particular black holes (BHs),
in general relativity (GR).
Vacuum BHs: The gravitational atoms have only mass

and angular momentum, as macroscopic degrees of free-
dom [1–3], measured at their horizon, ðMH; JHÞ. It turns
out that such “atoms” cannot be balanced in vacuum GR,
without introducing naked singularities [4–6]. Placing them
in an external global gravitational field, on the other hand,
can indeed balance gravitational atoms locally [7], but at
the cost of losing asymptotic flatness, in fact creating
asymptotic singularities [8]. This suggests, however, that
the right smooth, local environment could balance gravi-
tational atoms [10]. This is corroborated by a recent
example [13], wherein, however, the environment was
made up of unphysical “matter” [14].
In this Letter, we show that equilibrium gravitational

molecules—two BHs with only ðMH; JHÞ individual
degrees of freedom and asymptotically flat—exist in a
smooth local environment, as exact solutions of GR
minimally coupled to simple and physical “matter” [15].
More generically, we unveil a mechanism, and lay out a
methodology, to construct other families of such nonlinear
molecules, prone to different applications.
The model and the environment.—Consider the Einstein-

(massive, complex) scalar model described by the action
S ¼ ð4πÞ−1 R d4x

ffiffiffiffiffiffi−gp
L, with [16]

L ¼ R
4
− gαβΦ�

;αΦ;β − μ2Φ�Φ; ð1Þ

where R is the Ricci scalar, gαβ the spacetime metric, with
determinant g, Φ is a complex scalar field with mass μ, and
the asterisk denotes complex conjugation.

Model (1), for appropriate ranges of μ, is a popular
fuzzy dark matter model, to which different scalar self-
interactions can be added [17,18]. One class of solutions
are scalar (mini-)boson stars (BSs) [19], a family of self-
gravitating solitons, often described as macroscopic Bose-
Einstein condensates [20], that can have a multipolar
structure, akin to hydrogenic orbitals [21]. Here, we focus
on dipolar spinning boson stars (DsBSs) [22,23]—see also
[24,25] for the static case—with the metric

ds2 ¼ −e2F0dt2 þ e2F1ðdr2 þ dz2Þ þ e2F2ρ2ðdφ −WdtÞ2;
ð2Þ

where fρ; z;φg are cylindrical coordinates and Fi, W are
functions of ðρ; zÞ, i ¼ 0, 1, 2. The geometry of DsBSs isZ2

even, Fiðρ;−zÞ ¼ Fiðρ; zÞ, Wðρ;−zÞ ¼ Wðρ; zÞ, with an
equatorial plane at z ¼ 0. On the other hand, the scalar field,
Φ ¼ ϕðρ; zÞeiðmφ−ωtÞ, is Z2 odd, ϕðρ; zÞ ¼ −ϕðρ;−zÞ,
where ω > 0 and m∈Z are the frequency and azimuthal
harmonic index. The π phase difference between the north
and south hemispheres yields a repulsive scalar interaction
between the two constituents of the DsBSs [25,26]. DsBSs
can be interpreted as two individual spinning BSs balanced
by their short (long) range scalar repulsion (gravitational
attraction). The domain of existence of the DsBSs is shown
in the inset of Fig. 2 in an ADM mass vs frequency diagram
[27]. The stars exist for 0.6835≲ ω ≤ 1 and the diagram
shows the characteristic spiral shape of other bosonic star
solutions.
Bifurcation points.—Individual spinning mini-BSs are

mass tori in GR [28,29]. To gain intuition, consider a mass
torus in Newtonian gravity. The simplest case is an
infinitely thin torus: a ring of radius R and constant mass
density χ. In a cylindrical chart ðρ; z;ϕÞ onR3 [30], take the
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ring on the z ¼ zr⩾0 plane and centered at ρ ¼ 0; its
gravitational potential at ðρ; z;ϕÞ is

Ψring
zr ¼ −

Z
2π

0

χRdφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 2ρR cosðϕ − φÞ þR2 þ ðz − zrÞ2

p :

ð3Þ

The gravitational force F ¼ −∇Ψ has a z component
always directed toward the plane of the ring (for particles
outside that plane). Its magnitude is not monotonic. Along
ρ ¼ 0, it attains a maximum at a critical distance
jz̃ − z̃rj ¼ z̃crit ≡ 1=

ffiffiffi
2

p
, where z̃≡ z=R. This turns out

to determine the equilibrium points of a 2-rings system, a
Newtonian analog to the DsBSs solutions—Fig. 1.
Consider two parallel thin rings, both with radius R,

symmetrically placed with centers at ρ ¼ 0, on the planes
z ¼ �zr—Fig. 1 (top left). The corresponding Newtonian
potential is Ψ2 rings

−zr;zr ¼ Ψring
−zr þΨring

zr . The number of equi-
librium points on the z axis now depends on the dimen-
sionless ratio z̃r: for z̃r < z̃critr , there is a single equilibrium
point, at zeq0 ¼ 0. This is stable against vertical displace-
ments, since a test particle displaced from the origin is
attracted to the furthest ring; for z̃r > z̃critr , two new
equilibrium points emerge, 0 < jzeq� j < jzrj. They bifurcate
from zeq0 ¼ 0 and are symmetric with respect to z ¼ 0

[31]—see an illustrative Ψ in Fig. 1 (bottom left). They are
stable against vertical displacements, whereas zeq0 ¼ 0 now
becomes unstable. In the limit z̃r ≫ 1, the new equilibrium
points tend to the center of each of the rings, zeq� → �zr.
The upshot is that the emergence of the new equilibrium

points relies on the existence of a maximum of the vertical
force of each ring.
Let us now turn to the (timelike) equilibrium points

on the DsBSs geometry, cf. Eq. (2), of the form
ðρ; z;φÞ ¼ ð0; zeq;φ0Þ; ðρ̇; ż; φ̇Þ ¼ 0 ¼ ðρ̈; ̈z; φ̈Þ, where
derivatives are with respect to proper time. The geodesic
equations, ẍα þ Γα

βγ ẋ
βẋγ ¼ 0, yield the Christoffel symbols

conditions Γρ
tt ¼ Γz

tt ¼ Γφ
tt ¼ 0, at the equilibrium point.

Considering the geometry (2), the last condition is obeyed
and the first follows from smoothness at the axis of the
metric functions. The remaining condition (Γz

tt ¼ 0) yields
∂zF0 ¼ 0 at equilibrium points. We scanned the parameter
space of DsBSs [23]—Fig. 2—and observed always three
equilibrium points, zeq0 ¼ 0, zeq� ≠ 0, as in the Newtonian
2-rings system for z̃r > z̃critr —Fig. 1 (right). The fact that
ΔBS (Fig. 2) never nears zero may explain the absence of
DsBSs with a single equilibrium point.
Static equilibrium points for a timelike test particle in a

BH/soliton spacetime suggest (but do not guarantee) a
bifurcation toward a new family of solutions, wherein the
test particle is promoted to a backreacting object. A familiar
example is the extremal Reissner-Nordström BH which
bifurcates into the Majumdar-Papapetrou multi-BH space-
times, which can be diagnosed by the equilibrium points of
(charged) geodesics around the former. Another example,
closer to our discussion, are spinning BSs, that have an
equilibrium point at their center. A spinning BH with
horizon angular velocityΩH can be added therein under the
synchronization condition [32]

w ¼ mΩH: ð4Þ

The resulting hairy BHs interpolate between spinning BSs
and the Kerr solution [33]. On the other hand, the

FIG. 2. Domain of existence of DsBSs (inset, red line) and the
distance between the two constituents ΔBS (main panel) vs ω.
ΔBS is the proper distance along the z axis between the extrema of
Φ, attained, however, for ρ ≠ 0, due to the toroidal morphology. L
is the proper distance between zeq� .

FIG. 1. Equilibrium points in (left) a Newtonian two-rings
system (diamonds) and the corresponding gravitational potential
along the z axis; (right) the GR DsBSs system (disks) and a
corresponding (illustrative) metric F0 function. L (ΔBS) will
denote the proper distance between the horizons (BSs).
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bifurcation from the latter end is diagnosed by a different
equilibrium: the existence of a zero mode of a test bosonic
field, at the threshold of superradiance [34].
We shall now show that two BHs can be grown from the

equilibrium points of the DsBSs. They can either both
emerge from zeq0 or one from each of the two zeq� points.
Equilibrium between each horizon and the scalar environ-
ment requires condition (4). Equilibrium between the two
horizons relies on the extra opposing force of the two DsBS
constituents, themselves readjusting their distance ΔBS as
the BHs are grown. One anticipates that equilibrium
requires BHs carrying a small enough fraction of the total
mass. This is confirmed below. A complementary perspec-
tive is that each horizon-BS pair is a BH with synchronized
scalar hair [32], with the repulsive force due to the π-phase
difference between the two bosonic clouds balancing the
system.
Generalized Weyl framework.—Axially symmetric, sta-

tionary, multi-BH solutions in electrovacuum can be ana-
lytically constructed as Weyl solutions [35,36]. At the heart
of this construction is the notion of rod structure
[37]. In [13], a generalized Weyl construction for numerical
implementation in models wherein integrability is lost,
such as (1), was introduced, still based on a rod structure.
We shall follow this construction, generalizing it for sta-
tionary (rather than static) solutions.
In our case, the rod structure introduces two positive

parameters: Δz, (roughly) measuring the distance between
horizons and zH, determining the horizon(s) size; it reads
(i) a 1st semi-infinite spacelike rod, ½−∞;−zH�, in the φ-
direction; (ii) a 1st (finite) timelike rod, ½−zH;−Δz=2�;
(iii) a finite spacelike rod, ½−Δz=2;Δz=2�; (iv) a second
(finite) timelike rod ½Δz=2; zH�; (v) a second semi-infinite
spacelike rod, ½zH;∞�.
This rod structure results in a set of boundary conditions

on the z axis, ρ ¼ 0, conveniently expressed in terms of
f0 ≡ e2F0 , f1 ≡ e2F1 , f2 ≡ ρ2e2F2 . These are as follows.
Form ≠ 0,ϕ ¼ 0. For the timelike rods, corresponding to the
BH horizons, f0 ¼ ∂ρf1 ¼ ∂ρf2 ¼ 0, W ¼ ΩH, together
with limρ→0ρ

2f1=f0 ¼ const and ∂ρW ¼ 0. The hori-
zon angular velocity of the two BHs is the same,
ΩH ¼ Wð−zH⩽z⩽ − Δz=2Þ ¼ WðΔz=2⩽z⩽zHÞ; the two
BHsarecorotating.Aswith the singleBHcase [32], assuming
the existence of a power series expansion of the solutions near
a horizon results in (4). Each horizon has a spherical topology,
but deviating from a round sphere. They have the same area
AH ¼ 2π

R zH
Δz=2 dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ð0; zÞf2ð0; zÞ

p
and Hawking temper-

ature, TH ¼ limρ→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðρ; zÞ=½ρ2f1ðρ; zÞ

p
�=2π. Thus, the

horizons are in thermodynamical equilibrium. The total
entropy is twice that of a single BH, S ¼ AH=2.
On a spacelike rod we impose (again at ρ ¼ 0)

∂ρf0 ¼ ∂ρf1 ¼ f2 ¼ ∂ρW ¼ 0; limρ→0ρ
2f1=f2 ¼ 1, addi-

tionally, imposes the absence of conical singularities. The
proper length of the finite φ-rod measures the interhorizons
distance, L ¼ RΔz=2

−Δz=2 dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ð0; zÞ

p
—Fig. 1 (right).

Flat spacetime is approached for large ðρ; jzjÞ, wherein
ϕ → 0. The ADM mass M and angular momentum J can
be read off from the asymptotic metric components:

−gtt ≃ 1 − 2M=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
, gφt ≃ −2Jρ2=ðρ2 þ z2Þ3=2. As

usual in (asymptotically flat) BH mechanics, the temper-
ature, entropy, and the global charges are related by a Smarr
mass formula [38], M ¼ 2THSþ 2ΩHðJ −mQÞ þMΦ,
with MΦ the energy outside the BHs stored in the scalar
field. Q is the conserved Noether charge associated to the
global Uð1Þ symmetry of (1) [39]. The total mass is then
M ¼ MH þMΦ, with MH the (total) mass of the horizons,
that can be computed via Komar integrals [40].
Finally, the vacuum, corotating double Kerr solution [41]

can be described by the above formalism, but with rather
involved expressions—see, e.g., [4,42,43].
Numerics.—We have solved numerically the set of five

coupled nonlinear elliptic partial differential equations
resulting from (1), with the ansatz (2), subject to the above
boundary conditions. For Φ we take m ¼ 1 [44]. The input
parameters are {ΩH or w; Δz, zH}. The balanced two
spinning BHs (2sBHs) are constructed by scanning the
domain of existence of general unbalanced solutions at
constant ΩH, and varying zH and Δz. Additionally fixing
(say) zH, regular configurations may exist for some discrete
values of Δz only [45]. Details on the approach, in
particular on the coordinates better suited for numerics,
can be found in [13]. All solutions reported here are free of
conical singularities, and no pathologies were observed on
and outside the event horizon. Typical numerical errors are
∼10−3 [46].
Results.—DsBSs have no timelike rods: zH ¼ Δz=2. ω is

the only input parameter (Δz is arbitrary). Taking Δz ¼ 0,
zH ≠ 0 adds a single BH horizon at zeq0 ¼ 0 for any DsBS
along the spiral in Fig. 2, yielding a family of BHs with
parity-odd synchronized hair, studied in [23].
Any DsBS appears to also bifurcate into a 2sBH

configuration, obeying (4). As for the single BH case
[23], increasing the horizon size—via zH—2BHs emerge
from the seed DsBS at zeq0 ¼ 0. Along the branch with the
corresponding fixed frequency ω ¼ ΩH, the two BHs
initially increase in size (AH). They depart from the
equatorial plane—L grows—becoming (h)airborne. The
sequence of solutions can terminate in two possible ways.
Away from the minimal frequency, ω≳ 0.735, L never
vanishes again and the sequence ends on the zeq� ≠ 0

equilibrium points of the same DsBS—this is illustrated
by two sequences labeled (i) in Fig. 3. Close to the minimal
frequency, 0.6835≲ ω≲ 0.735, L does vanish again and
the sequence ends on the zeq0 ¼ 0 equilibrium point of
another DsBS (with the same ω—Fig. 2)—this is labeled
sequence (iia) in Fig. 3. Additionally, these very same two
DsBSs can also be connected by a sequence departing from
the zeq� ≠ 0 equilibrium points of one and arriving at the
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analogous points of the other; here L never vanishes along
the whole sequence, labeled (iib) in Fig. 3.
Figure 3 (inset) also reveals that the horizon mass is

never larger than a few percent—in our scanning we found
a maximum of ∼8% total horizon mass (twice that of an
individual BH) along a type (i) sequence, seeded on the
upper DsBSs branch. The largest BHs are also the ones
with the lowest Hawking temperature—Fig. 4 (inset). The
main panel of this figure also makes clear that the two
DsBSs connecting sequences (iia) and (iib) are different,
since they have different masses.
Figure 5 (top panel) provides a different illustration

of the sequences (i),(iia), and (iib). It provides a close-up of
the lower frequency end of theM-ω domain of existence of
DsBSs—inset of Fig. 2—since the transition between
sequences (i) and (ii) occurs in this frequency region.
Adding L as a third dimension, makes transparent the

sequences of 2sBHs (black solid lines), branching off from
the DsBSs at zeq0 ¼ 0—from the red solid line—or at
zeq� ≠ 0—from the blue dotted line, which yields L.
From the drawn sequences one can extrapolate the surface
describing the domain of existence of the 2sBHs: two
tendentially vertical (curved) surfaces for the larger ω that
join together and become two tendentially horizontal
(curved) surfaces for the smaller ω. Additionally, one
can conceive another surface, with L ¼ 0, bounded by
the DsBS line, describing the single BH solutions found
in [23].
Figure 5 (bottom panel) shows a sequence of type (i) in a

horizon mass MH vs distance L diagram, for a different
(larger) frequency. It also superimposes the horizon shape
and size, computed as an isometric embedding in E3 [47].
One can appreciate the growth of the horizon size from both
the zeq0 ¼ 0 and the zeq� ≠ 0 branching points. The deviation
from sphericity of the horizons is small; the individual
horizons also possess a small Z2 asymmetry, better seen in
the heat map inset.

FIG. 3. Horizon area AH vs inter-horizon distance L for
qualitatively different sequences of (balanced) 2sBHs. The inset
shows the mass fraction stored in the scalar field.

FIG. 4. Mass M vs interhorizon distance L for the same
sequences as in Fig. 3. The inset shows the BH temperature.

FIG. 5. Top: illustrative sequences of 2sBHs branching off from
the DsBHs. Bottom: horizon embedding superimposed on an
ðMH; LÞ diagram. The heat map shows the horizon geometry
Ricci scalar for the maximal area solution (the south one—in
blue), which varies by ∼20% and is Z2 asymmetric, maximized
in the northern hemisphere.
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Discussion.—The asymptotically flat balanced 2sBHs
described rely on two ingredients: the synchronization
condition (4), allowing equilibrium between a bosonic
environment and a horizon; a bosonic environment whence
the BHs bifurcate with multiple (three) equilibrium
points. These ingredients are also present—possibly with
a slightly different rationale—in other models leading to
natural generalization of these balanced 2sBHs solutions.
Adding scalar self-interactions to (1) allows a variety of
models [19]. Judging by the healing properties seen in
other contexts [48–50], self-interactions may improve the
dynamical properties of these 2sBHs systems, which is
partly corroborated by the dynamical analysis of static
dipolar boson stars with self-interactions in [51], an
interesting (but challenging) problem. Similar 2sBH con-
figurations may also exist for Proca fields, for which BHs
with synchronized hair are also known [52], but (currently)
not dipolar Proca stars, static or spinning.
A detailed study of the physical andmathematical proper-

ties of these balanced 2sBHs systems is in order and will
be presented somewhere else. Phenomenologically, since
Eq. (2) describes a dark matter model, one may entertain the
question if there could be realistic dark matter distributions
that would bring the mutual attraction of a dynamical BH
binary to a halt.
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