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We propose a measurement-based model for fault-tolerant quantum computation that can be realized
with one-dimensional cluster states and fusion measurements only; basic resources that are readily
available with scalable photonic hardware. Our simulations demonstrate high thresholds compared with
other measurement-based models realized with basic entangled resources and 2-qubit fusion measure-
ments. Its high tolerance to noise indicates that our practical construction offers a promising route to
scalable quantum computing with quantum emitters and linear-optical elements.
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Introduction.—Scalable quantum-computing architec-
tures [1,2] are built on quantum error-correcting codes [3]
that identify and correct for errors that quantum hardware
experiences as logical algorithms progress. However, it
remains difficult to produce an architecture with a suffi-
ciently large number of high-quality qubits to complete
long quantum computations reliably. To overcome this
technological challenge, we should design bespoke quan-
tum architectures that take advantage of the positive
features of scalable physical hardware [4–18]. Ideally,
we should exploit the native operations of the underlying
quantum system to minimize the noise processes that will
lead to computational errors.
Quantum emitters are a promising tool to implement

photonic architectures [19,20]. They enable the determin-
istic generation of a variety of entangled states with even a
single emitter [21,22], such as one-dimensional cluster
states [21,23], via appropriate pulse sequences driving a
spin-photon interface interleaved with photon emission.
Quantum emitters have been demonstrated with several
hardware platforms, including quantum dots [24,25],
atomic systems [26,27], superconducting circuits [28],
and nitrogen-vacancy centers [29]. Indeed, deterministic
entanglement has recently been demonstrated between as
many as 14 photons [27].
Measurement-based models for fault-tolerant quantum

computing [30] are particularly well suited for photonic

architectures. In this model, we prepare entangled resources
that can be produced by constant-depth circuits. Measuring
these resources processes quantum information and, at the
same time, extracts syndrome data for error correction. We
often consider realizing the resource states by entangling
individual physical qubits [6,9] or small, constant-sized,
entangled resources [7,12]. These proposals place a sig-
nificant demand on optical hardware to entangle the
individual physical systems, using either unitary gates or
fusion-based operations [31].
Here, we find that we can reduce the complexity of

realizing entangled resources by taking advantage of the
one-dimensional entangled states we can produce readily
with quantum emitters. The remaining entangling oper-
ations that are needed to perform measurement-based
fault-tolerant quantum computing are made at the readout
stage using 2-qubit fusion measurements [31]. Central to
our architecture is a specific resource state whose geom-
etry is obtained by foliating [32,33] the Floquet color code
[34,35]; an example of a dynamically driven code [36].
These codes are of recent interest due to their
high thresholds [37,38] and their implementation with
weight-two parity measurements. Our numerical simula-
tions demonstrate very high thresholds by refining our
architecture. Specifically, we propose using a decorated or
“branched” one-dimensional cluster states to reduce the
number of qubits we need to prepare and measure in the
fault-tolerant system. In what follows, we describe our
construction before presenting numerical results.
The foliated Floquet color code.—In measurement-based

fault-tolerant quantum computation, we prepare a resource
state that can be specified by a graph [23,39]. A qubit is
initialized in an eigenstate of the Pauli-X matrix on every
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node of the graph v. Controlled-phase gates are then
applied to pairs of qubits whose corresponding nodes share
an edge. The stabilizer group [40] of the resource stateR is
generated by elements Rv ¼ Xv

Q
q∈Δv Zq for each node v,

with Δv the neighborhood of v and Xv, Zv the standard
Pauli matrices acting on v. The resource is then measured,
projecting it onto the state with stabilizer group M,

generated by the commuting Pauli measurements we make.
The measurements provide syndrome data S ¼ R ∩ M
that are used to identify errors [33,41,42]. We find our
measurement-based model by foliating [32,33] the Floquet
color code [34,35]. The resulting graph is shown in
Fig. 1(a). We call our model the foliated Floquet color
code (FFCC).
Foliation is a method for mapping circuit-based models,

which are realized with static qubits, onto the measure-
ment-based picture. Roughly speaking, data qubits of the
static model are replaced with linear cluster states, where
the ordering of the qubits of these linear clusters can be
regarded as a timelike direction in the static picture.
Measurements that are made in the static picture are
realized in the measurement-based picture by coupling
additional “check qubits” to the appropriate qubits of the
linear clusters that model the time evolution of data qubits
of the static model.
We obtain a three-dimensional lattice by applying the

foliation methods described in Ref. [33] to the Floquet
color code [34,35], where data qubits lie on vertices of a
two-dimensional hexagonal lattice, shown at the base of
Fig. 1(a). The graph describing R has two types of nodes;
let us call them data nodes and check nodes. Data nodes
have indices ðq; tÞ, where 1 ≤ q ≤ n index data qubits of
the hexagonal lattice. The second index 1 ≤ t ≤ T denotes
a temporal order. Data nodes ðq; tÞ and ðq; tþ 1Þ share an
edge for all q and t.
The remaining edges to complete the graph forR connect

data nodes to check nodes. The check nodes are associated
with the edges of the hexagonal lattice. There are three types
of edges, which are assigned colors red, green, or blue [43].
Specifically, we three color the faces of the hexagonal lattice
such that no two adjacent faces have the same color. Edges of
the hexagonal lattice are then assigned the color of the two
faces they connect. Let us also denote fv; wg ¼ ∂e as the
pair of vertices of the hexagonal lattice that are connected by
edge e. We have check nodes associated with edges of
different colors at different times. Let us denote the check
nodes with indices ðe; tÞ. We have check nodes associated
only with the blue, green, and red edges at times 3tþ 1,
3tþ 2, and 3tþ 3, respectively. Every check node ðe; tÞ of
the appropriate color then shares an edge with the two data
nodes ðv; tÞ for both v ∈ ∂e. These check nodes are
entangled with the data nodes to correspond precisely to
the measurement sequence of the Floquet color code
according to the foliation methods of Ref. [33]. This
completes the construction shown in Fig. 1(a).
Up to lattice geometry, the model we have produced

shares many features with the topological cluster-state
model [41] where, for now, we assume we measure all
of the qubits in the Pauli-X basis; i.e., we project the system
onto the stabilizer group M ¼ h�Xvi to obtain the code
detectors that identify errors. The FFCC has local detectors
S ¼ R ∩ M on cells of the lattice. We show an example of

FIG. 1. Realizing the foliated Floquet color code with linear
cluster states and fusion measurements. (a) The resource state R
we construct is illustrated by the graph. Detectors S ∈ S ¼ R ∩
M are the product of Pauli-X terms at the boundaries of local
cells. The vertical timelike axis is labeled t, which indexes layers
of the three-dimensional structure. (b) The resource state can be
composed of one-dimensional cluster states, or “chains”, as in (c),
shown by thick solid lines, and fusion measurements, marked by
wavy red lines. The qubits of each chain are indexed with label τ.
We can make variations of our construction with different input
resources. We identify the qubits of the chain in (c) with those in
(d)–(f) with their numerical indices. We obtain branched chains
(d), up to local Clifford operations, by measuring white qubits of
(c) in the Pauli-X basis. We can also produce long chains from
small resource states by fusing the first and last qubit of linear
chains of length l ¼ 4, for example, (e). We can also fuse the end
points of short branched chains (f), where we show a short branch
of l ¼ 8 qubits.
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a local detector in Fig. 1(a). Similarly, the foliated code
gives rise to correlation surfaces that propagate quantum
information between input and output regions [2,41,44].
We show examples of correlation surfaces in Fig. 2.
Additionally, our model can be divided into two disjoint
lattices of qubits: the primal and dual lattice, where
detectors and correlation surfaces are supported on only
one of the two disjoint lattices. The primal and dual lattices
are distinguished with black and white vertices in Fig. 1(a)
and Figs. 2(b) and 2(c).
The common features of our model with those in

Ref. [41] mean that we can adopt the fault-tolerant gate
set presented in Ref. [2] by reconfiguring our measurement
pattern such that gates are performed by braiding different
types of defect punctures and by distilling magic states to
complete a universal gate set. It may be interesting to
consider adapting the methods of Refs. [9,33,45,46] to our
lattice geometry for more general gate operations based on
the braiding of twist [47] and corner [33,48] defects. It may
also be interesting to investigate implementations of non-
Clifford gates with this lattice geometry [49,50].
Quantum computing with fusion measurements.—Let us

now look for practical ways of preparing and measuring the
resource stateR. Recently, Ref. [12] has shown that we can
eliminate the difficulty of preparing a large entangled
resource state by completing the preparation and readout
of a resource state with probabilistic entangling Bell

measurements, i.e., fusion operations [31]. With an appro-
priate choice of fusion measurements, we find that we can
decompose the graph shown in Fig. 1(a) into a series of
physical one-dimensional cluster states, which we call
chains, and fusion measurements only, see Fig. 1(b).
The qubits of the chain are indexed 0 ≤ τ ≤ 3T − 1, see
Fig. 1(c), where a single chain is laid out independent of the
three-dimensional construction. In the figure, each chain is
marked by bold lines of different colors, where we see that
every chain has three qubits at each time step t.
It is helpful to bicolor the vertices of the hexagonal lattice

black and white such that no two vertices of the same color
share an edge. Likewise, data nodes ðv; tÞ have the same
color as vertex v of the hexagonal lattice. We identify all of
the black qubits ðv; 1Þ of the foliated system at t ¼ 1 with
the τ ¼ 0 qubit of each chain. The next qubit of the chain
with τ ¼ 1 is identified with the unique edge qubit ðe; 1Þ
with v ∈ ∂e and then qubit τ ¼ 2 is identified with ðw; 1Þ ≠
ðv; 1Þ with w ∈ ∂e. The chain then progresses to the next
level before repeating, where the τ ¼ 3 element of the chain
is identified with ðw; 2Þ. The progression continues ad infin-
itum. In general, we have that the τ ¼ 3tð3tþ 1Þth qubit
lies at qubit ðv; tÞ [ðe; tÞ with v ∈ ∂e], and the 3tþ 2th
qubit of the chain lies at ðw; tÞ and w ∈ ∂e with w ≠ v. The
next qubit in each chain lies at qubit ðw; tþ 1Þ. Indices
ðv; tÞ and ðw; tÞ are, respectively, black and white (white
and black) for odd (even) values of t.
By comparing Figs. 1(a) and 1(b) we see the chains are

organized such that many of the edges of the resource state
graph are completed in the production of the chains.
However, some entangling operations remain to be per-
formed. We then complete the resource state with fusion
operations. Up to local Clifford operations, we can interpret
a successful fusion measurement as a controlled-phase
gate, i.e., creation of an edge, followed by two single-qubit
measurements in the Pauli-X basis. Fusion measurements
shown in Fig. 1(b) therefore complete the entangling
operations needed to produce the resource state and
subsequently make the single-qubit measurements we need
for readout. Specifically, we perform fusion measurements
between black (white) data nodes ðv; tÞ and ðv; tþ 1Þ at
odd (even) values of t. Final readout in single-qubit bases
different from Pauli-X, required for universal gate sets, can
also be simply implemented by reconfiguring the linear-
optical fusion circuit used [7,12].
We consider variations where chains are replaced by

other resources that may be more readily implemented. In
Fig. 1(c) we show a single chain, where the data (check)
nodes are marked black (white). As Fig. 1(b) shows, the
check nodes are completely entangled with their neighbors
∂e when the chain is produced. We may therefore consider
replacing the chain with a decorated chain that is the
postmeasurement state that would be obtained if the check
nodes of a standard chain are measured in the Pauli-X basis.
Up to local Clifford operations [39] we obtain the resource

FIG. 2. Correlation surfaces in the foliated Floquet color code.
(a) Shows the orientation of correlation surfaces that lie orthogo-
nal to a canonical spatial direction and the temporal direction in
green and blue, respectively. We show the microscopic details of
these operators in (b) and (c), respectively, with timelike axes t
marked with arrows.
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state with branches, as shown in Fig. 1(d). This state is
readily prepared with quantum emitters, see Supplemental
Material [51]. We call the measurement-based model
realized with these decorated chains the “branched con-
struction.” The branched construction therefore neglects to
produce check nodes and only instead constructs the data
nodes, such that the edge measurements are effectively
already made.
We might also look for variations where we produce the

large resource states from smaller entangled resources.
For example, fusion measurements between qubits of
l ¼ 4-qubit linear cluster states, as shown Fig. 1(e), produce
the chains we use in our construction.We can also interpolate
between the short chain construction and the branched chain
constructionbyconnecting finite-size branched chains at their
end points via fusion measurements. We show a short
branched chain of length l ¼ 8 qubits in Fig. 1(f).
Error correction.—We can also adopt methods used for

the topological cluster state to perform error-correction
with the FFCC. We are interested in correcting Pauli errors
as well as heralded qubit erasure occurring on the physical
qubits of the system.
Every single qubit supports exactly two detectors [35].

It follows that, if a Pauli error occurs, two detectors are
violated. We can therefore regard a single error as a string
segment with violated detectors at its end points [1,41]. In
general, multiple Pauli errors compound to make multiple
strings of potentially greater length. We can correct the
errors by finding pairs of violated detectors that are corrected
by short string operators. Provided the proposed correction
has an equal parity of errors supported on the correlation
surface as the initial error, we declare the correction
successful. We find nearby pairs of violated detectors using
PyMatching [56], an implementation of minimum-weight
perfect matching [1].
We also adopt the methods presented in Ref. [57] for

dealing with heralded erasure. If a qubit v is erased, we no
longer have access to its two stabilizers Sb and Sc that
support v. To deal with this, we neglect the erased qubit,
and we replace these two supporting stabilizers with their
product SbSc, thereby creating a super cell. In general, we
have to update the lattice to produce super cells for all the
qubits that experience erasure. Error correction for Pauli
errors on the updated lattice then proceeds in the same way
using super cells on qubits that have not been erased. It is
also important to find a correlation surface that contains no
erased qubits. To do so, we multiply the correlation surface
by detector operators to find a variation of the operator such
that no qubits are erased. These can be readily achieved by
Gaussian elimination [58]. Otherwise, we consider error
correction to fail.
The error-correction methods described above are readily

adapted for the fusion errormodel [12]. In thismodel, a fusion
erasure takes into account the erasure of measured qubits
as well as the possible failure of the fusion measurement.

The fusion error model also includes fusion measurement
errors induced by Pauli errors on the fused qubits.
Threshold estimates.—We evaluate threshold error rates

for a phenomenological fusion-based noise model as in
Ref. [12] where erasures and errors occur independently for
each fusion measurement and with a probability equal to
the associated noise rate. Fusion networks are simulated
with periodic boundaries so that we can check logical
failures for the two distinct correlation surfaces shown on
orthogonal planes in Fig. 2. Thresholds are evaluated by
comparing the logical error rate of our decoder for different
noise parameters and different lattice sizes. We evaluate
logical failure rates with 104 Monte Carlo samples (see
Supplemental Material [51] for details). We also report on
an analysis for bare lattices in the Supplemental Material.
We show threshold error rates for different constructions

in Fig. 3 for various rates of error and erasure that occur
under fusion measurements. The highest thresholds are
obtained using the branched chain construction. The
threshold interpolates between an erasure rate ∼13.2% to
an error rate ∼1.5%. The thresholds we obtain outperform
previous constructions based on hexagonal- and star-
shaped resource states used to produce Raussendorf lattice
structures [12]. We reproduced the thresholds for these
models. They are shown by dashed and dotted lines in
Fig. 3. Such improvements manifest the advantages of
constructing a model with a lower valency lattice, a direct
consequence of having only weight-two parity measure-
ments, while still inheriting good error-correction perfor-
mance of the underlying Floquet color code. The thresholds
for constructions that include fusing branched chains of
constant size, as shown in Figs. 1(e) and 1(f), are also
reported in Fig. 3 for different lengths l ∈ f4; 8; 14g.

FIG. 3. Fault-tolerant regions for fusion-based constructions.
Solid lines show thresholds when constructing the FFCC lattice
by fusing branched chains with length l ∈ f4; 8; 14g and for the
limit l → ∞ where the length is much longer than the lattice unit
cell size. For comparison, we also show the performance of the
constructions from Ref. [12] using hexagonal and 4-qubit star-
shaped resource states by the dashed and dotted black lines,
respectively.
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Significant improvements over previous constructions can
be observed already for chains with a moderate constant
size of 14 qubits. Thresholds relative to erasure can also be
significantly improved by biasing the fusion failures, as
recently shown in Refs. [59,60]. In the Supplemental
Material [51] we report how these techniques can enhance
erasure thresholds also in our constructions.
Discussion.—To summarize, we have demonstrated a

practical architecture to realize fault-tolerant measurement-
based quantum computation using one-dimensional
entangled resources. Such resource states are readily and
deterministically prepared with quantum emitters, avoiding
the large overheads required for preparing entangled re-
source states via multiplexed probabilistic processes in all-
optical approaches [61] and can also be relevant for other
physical systems with probabilistic entangling operations
[62–64]. Furthermore, our numerical simulations demon-
strate very high thresholds. We obtained these results
focusing on phenomenological noise that models all noise
sources with a single parameter. This allows us to compare
our proposal with others already presented in the literature.
In the future, it will be important to run simulations that
consider more representative models of noise sources
that we anticipate in the laboratory. In the Supplemental
Material [51] we discuss some of them in the context of
preparing linear cluster states with quantum emitters.
We argue that the high thresholdswe have obtained are due

to the resource efficient and practical construction we have
designed that requires a relatively low number of fusion
operations for its realization. Better models with higher noise
tolerance could, perhaps, be obtained by findingmore general
lattice structures (see, e.g., Refs. [65,66]). Ultimately, wemay
find more robust models by finding more general resource
states that can be readily produced, for example, with
interactions between multiple emitters [22,67].
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