
Reversing Unknown Qubit-Unitary Operation, Deterministically and Exactly

Satoshi Yoshida ,1,* Akihito Soeda,1,2,3,† and Mio Murao 1,4,‡
1Department of Physics, Graduate School of Science, The University of Tokyo,

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
2Principles of Informatics Research Division, National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
3Department of Informatics, School of Multidisciplinary Sciences,
SOKENDAI (The Graduate University for Advanced Studies),

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
4Trans-scale Quantum Science Institute, The University of Tokyo,

Bunkyo-ku, Tokyo 113-0033, Japan

(Received 17 October 2022; revised 1 July 2023; accepted 14 August 2023; published 19 September 2023)

We report a deterministic and exact protocol to reverse any unknown qubit-unitary operation, which
simulates the time inversion of a closed qubit system. To avoid known no-go results on universal
deterministic exact unitary inversion, we consider the most general class of protocols transforming
unknown unitary operations within the quantum circuit model, where the input unitary operation is called
multiple times in sequence and fixed quantum circuits are inserted between the calls. In the proposed
protocol, the input qubit-unitary operation is called 4 times to achieve the inverse operation, and the output
state in an auxiliary system can be reused as a catalyst state in another run of the unitary inversion. We also
present the simplification of the semidefinite programming for searching the optimal deterministic unitary
inversion protocol for an arbitrary dimension presented by M. T. Quintino and D. Ebler [Quantum 6, 679
(2022)]. We show a method to reduce the large search space representing all possible protocols, which
provides a useful tool for analyzing higher-order quantum transformations for unitary operations.
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Introduction.—Time flows from the past toward the
future, and the direction of time cannot be changed [1].
Time evolution of a closed quantum system is represented
by a reversible operation, namely, a unitary operation
corresponding to a unitary operator U ¼ e−iHt using a
Hamiltonian H and time t [2]. Then, we may simulate the
inverse operation corresponding to U−1 ¼ eiHt by prepar-
ing the system with Hamiltonian −H if we know the full
description of H. However, a physical system in nature
does not tell us the full description of H a priori. Process
tomography may be used to estimate the full description,
but it may destroy the original state and introduces an extra
resource overhead [3,4]. To simulate the time inversion
t ↦ −t of a physical system, one needs to simulate the
inverse operations of unitary operations given as black
boxes. In this Letter, we consider the following task called
“unitary inversion”: Given a d-dimensional unknown
unitary operation represented by a unitary operator Uin,
the task is to implement the inverse operation U−1

in .
Simulation of the inverse operation of unitary operations
plays an important role not only for foundational
problems [5] but also for practical problems such as
controlling quantum systems [6] and measurement of the
out-of-time-order correlators [7–10]. Unitary inversion has
also been investigated as one of the most important

transformations of quantum operations, namely higher-
order quantum transformations [11], which are studied to
aim for a quantum version of functional programming [12].
In general, it is difficult to develop a protocol imple-

menting a given functionality. It is nontrivial whether such
a protocol exists or not in quantum regime. As often is the
case with universal protocols (e.g., state cloning [13] and
universal NOT [14]), we cannot implement the inverse
operation U−1

in deterministically and exactly with a single
use of Uin [15]. To avoid this no-go theorem, protocols
utilizing n calls of Uin to implement U−1

in have been
investigated. One trivial protocol is to perform a quantum
process tomography [3,4] of Uin and then implement the
inverse operation of the estimated operation. However,
this protocol needs a large number of calls of Uin, and the
implemented operation is nonexact. More efficient non-
exact or exact but probabilistic protocols have been
considered. A nonexact unitary inversion protocol is
proposed in Ref. [16] inspired by the refocusing in
NMR [17,18]. A probabilistic exact protocol for qubit-
unitary inversion is proposed in Ref. [19]. This protocol is
generalized to an arbitrary dimension in Refs. [20,21] by
utilizing unitary complex conjugation [22,23] and port-
based teleportation [24–26]. Nonexact protocols using a
similar strategy are proposed in Refs. [23,27]. Probabilistic
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exact protocols to reverse uncontrolled Hamiltonian
dynamics are presented in Refs. [6,28–30]. Yet, the
proposed protocols so far are either probabilistic or
nonexact, i.e., the output operation is obtained probabilisti-
cally or nonexactly even if all the operations in the protocol
are error-free. This property limits the power of unitary
inversion as a subroutine in practical problems since even a
small failure probability or a small error will accumulate to
destroy the whole computational result if we concatenate
transformations of unitary operations.
Some works have investigated the fundamental limits of

unitary inversion. The limits of probabilistic exact or
deterministic nonexact unitary inversion have been inves-
tigated using semidefinite programming (SDP) [21,27], but
the obtained numerical results are limited to small d and n
since we need to search within a large space including all
possible protocols. The limits have also been analyzed on
the restricted set of protocols (e.g., exact [20] or determin-
istic [27] protocol utilizing n calls of Uin in parallel, exact
“store-and-retrieve” protocol [19], and clean protocol [31]).
Deterministic exact unitary inversion is shown to be
impossible using parallel or “store-and-retrieve” protocols,
and clean protocols of exact unitary inversion do not exist
when n ≠ −1 mod d, even if probabilistic. However,
it has been an open problem whether deterministic exact
unitary inversion is possible or not using more general
protocols.
In this Letter, we report a deterministic and exact

protocol of qubit-unitary inversion. This protocol utilizes
n ¼ 4 calls of a qubit unitary Uin ∈SUð2Þ in sequence with
fixed quantum operations (see Fig. 1). The output state in
the auxiliary system depends on the input unitary operation
Uin, which can be used as a catalyst state in another run of
the unitary inversion [see Eq. (1)]. To search unitary
inversion protocols for an arbitrary dimension d, we use
an SDP to obtain the optimal deterministic unitary inver-
sion, presented in Ref. [27]. We reduce the size of the
search space by utilizing a certain symmetry, and obtain the
numerical results for n ≤ 5 and d ≤ 6.

Main result.—We present the main result of this Letter,
the existence of deterministic exact qubit-unitary inversion.
Theorem 1: There exists a quantum circuit transform-

ing 4 calls of any qubit-unitary operationUin into its inverse
operation U−1

in deterministically and exactly.
We show Theorem 1 by constructing a deterministic

exact qubit-unitary inversion shown in Fig. 1. It is imple-
mented using 4 calls of an arbitrary input qubit-unitary
operation Uin with fixed quantum operations (unitary
operations Vð1Þ and Vð2Þ and preparation of the anti-
symmetric state jψ−i ≔ ðj01i − j10iÞ= ffiffiffi

2
p

). The unitary
operations Vð1Þ and Vð2Þ are constructed using the
Clebsch-Gordan transforms [41,42] (see Supplemental
Material [32] for the detail). This quantum circuit outputs
U−1

in jϕini for an arbitrary input qubit-unitary operation Uin
and an arbitrary input qubit state jϕini with additional
quantum states jψUin

i ≔ ðUin ⊗ 1Þjψ−i and j0i⊗4, where 1
is the identity operator on a qubit system. The simulation of
this quantum circuit in QISKIT [43] is available at Ref. [44].
The quantum state jψUin

i can be used as a catalyst in the
qubit-unitary inversion. Since the first call of Uin in Fig. 1
can be replaced by the quantum state jψUin

i, we can
transform 3 calls of Uin and the quantum state jψUin

i to
the inverse operation U−1

in and the quantum state jψUin
i.

This transformation can be schematically written as

jϕini⊗ jψUin
i⊗ j0i⊗4↦U−1

in jϕini⊗ jψUin
i⊗ j0i⊗4; ð1Þ

by using 3 calls ofUin. Therefore, qubit-unitary inversion is
implemented using 3 calls of the input unitary operation
Uin and the catalyst state jψUin

i, which can be reused to
another run of qubit-unitary inversion of the same input
unitary operation Uin.
Proof sketch of Theorem 1:—The quantum circuit shown

in Fig. 1 applies a unitary operation fUin
≔ Vð2Þ

1���7½1⊗6
13���7 ⊗

ðUinÞ2�Vð1Þ
1���7½1⊗6

13���7 ⊗ ðUinÞ2� twice on the quantum state
jψ ini ≔ jϕini1 ⊗ jψ−i23 ⊗ j0i⊗4

4���7, where the subscripts
represent indices of the qubits on which the corresponding

FIG. 1. Deterministic exact qubit-unitary inversion protocol using 4 calls of an input qubit-unitary operation Uin, which implements
the inverse operation U−1

in on an arbitrary input quantum state jϕini with additional quantum states jψUin
i ≔ ðUin ⊗ 1Þjψ−i and j0i⊗4.

Here, each wire without a slash represents a qubit system, each wire with a slash represents a multiqubit system, numbers on wires
represent the indices of the corresponding systems, jψ−i is the antisymmetric state defined as jψ−i ≔ ðj01i − j10iÞ= ffiffiffi

2
p

, and Vð1Þ and
Vð2Þ are fixed unitary operations [32].

PHYSICAL REVIEW LETTERS 131, 120602 (2023)

120602-2



quantum operations act. It is sufficient to show that the
output quantum state of the quantum circuit is given by
jψouti ≔ −jψUin

i12 ⊗ U−1
in jϕini3 ⊗ j0i⊗4

4���7, i.e.,

f2Uin
jψ ini ¼ jψouti ∀ jϕini∈C2; Uin ∈SUð2Þ ð2Þ

holds.
This equation is equivalent to

g2Uin
jvϕi ¼ −jwϕi ∀ jϕi∈C2; Uin ∈SUð2Þ; ð3Þ

where gUin
, jvϕi and jwϕi are defined by gUin

≔ ½ðUinÞ1 ⊗
1⊗6
2���7�†ðfUin

Þ1���7½ðUinÞ1 ⊗ 1⊗6
2���7�, jvϕi ≔ jϕi1 ⊗ jψ−i23 ⊗

j0i⊗4
4���7, and jwϕi ≔ jψ−i12 ⊗ jϕi3 ⊗ j0i⊗4

4���7, respectively.
To show this relation, we investigate the action of gUin

on a 4-dimensional subspace H ⊂ ðC2Þ⊗7 defined by
H ≔ spanfjvϕi; jwϕijjϕi∈C2g. We show that the action
of gUin

on the Hilbert space H is given by

gUin
ðjvϕi; jwϕiÞ ¼ ðjvϕi; jwϕiÞG ∀ jϕi∈C2; ð4Þ

G ≔

 
− 1ffiffi

3
p − 1ffiffi

3
p

1ffiffi
3

p − 2ffiffi
3

p

!
; ð5Þ

if we define Vð1Þ and Vð2Þ properly using the Clebsch-
Gordan transforms. Thus, we obtain Eq. (3) since

g2Uin
jvϕi ¼ g2Uin

ðjvϕi; jwϕiÞð1; 0ÞT ð6Þ

¼ ðjvϕi; jwϕiÞG2ð1; 0ÞT ð7Þ

¼ −jwϕi ð8Þ

holds. See Supplemental Material [32] for the definitions of
Vð1Þ and Vð2Þ and the detail of the calculations.
SDP approach toward generalization for d > 2.—We

consider the problem to find deterministic exact d-dimen-
sional unitary inversion protocols for general d.
Reference [27] showed the optimal deterministic unitary
inversion circuit is obtained by the following SDP:

max TrðCΩÞ
s:t: C is a quantum comb: ð9Þ

The solution of the SDP (9) gives the optimal average-case
channel fidelity of unitary inversion using a quantum comb,
namely, transformations of quantum operations realized by
a quantum circuit shown in Fig. 2. The operator C is a
matrix representation of a quantum comb called the Choi
matrix of a quantum comb, and it is characterized by
positivity and linear constraints [45]. Once the Choi matrix
C is obtained, a quantum circuit implementing the corre-
sponding quantum comb can be derived [46]. The operator

Ω is a d2ðnþ1Þ × d2ðnþ1Þ positive matrix called the perfor-
mance operator [27]. In particular, if the solution equals 1,
deterministic exact unitary inversion is obtained (see
Supplemental Material [32] for the detail).
However, the numerical calculation of the SDP (9) in

Ref. [27] is limited to n ≤ 3 for d ¼ 2 and n ≤ 2 for
d ¼ 3 since the size of the matrix C is d2ðnþ1Þ × d2ðnþ1Þ,
which grows exponentially with respect to n. We pre-
sent the simplification of the SDP (9) in Supplemental
Material [32]. The main idea is to utilize the SUðdÞ ×
SUðdÞ symmetry of the operator Ω given by

½Ω; V⊗nþ1 ⊗ W⊗nþ1� ¼ 0 ∀ V;W ∈SUðdÞ: ð10Þ

Because of this symmetry, the SDP (9) can be solved
without loss of generality by imposing an additional
constraint given by

½C;V⊗nþ1 ⊗ W⊗nþ1� ¼ 0 ∀V;W ∈SUðdÞ: ð11Þ

The constraint (11) enables us to reduce the size of the SDP
(9). For instance, when n ¼ 1, any matrix C satisfying
Eq. (11) can be written as

C ¼
X

μ;ν∈ fsym;antisymg
cμνΠμ ⊗ Πν; ð12Þ

where cμν are complex coefficients and Πsym and Πantisym

are orthogonal projectors onto symmetric and antisymmet-
ric subspaces of ðCdÞ⊗2, respectively. Then, the degree of
freedom in the matrix C reduces from d8 to 4. For a general
n, we derive a block diagonalization of C using a group-
theoretic relation called the Schur-Weyl duality [47,48] to
obtain the simplified SDP.
We calculate the simplified SDP in MATLAB [49] using

the interpreter CVX [50,51] with the solvers SDPT3 [52–54]
and SEDUMI [55], and obtain the optimal values for
n ≤ 5 and d ≤ 6 (see Table I). Group-theoretic calculations
to write down the simplified SDP are done with
SAGEMATH [56]. By estimating the analytical formula for
the Choi matrix from the numerical result, we can derive
the corresponding unitary inversion circuit [46]. In fact, the
deterministic exact qubit-unitary inversion circuit shown in

FIG. 2. Quantum combs are composed of a sequence of
quantum operations Λð1Þ;…;Λðnþ1Þ with open slots. Input

quantum operations Φð1Þ
in ;…;ΦðnÞ

in can be inserted to the open
slots to obtain an output operation Φout.
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Fig. 1 is derived from the numerical result for the case
d ¼ 2 and n ¼ 4.
We also present the SDP to obtain the optimal fidelity of

unitary inversion using the input unitary operations in
parallel, which is simplified compared to Ref. [27]. Our
calculation allows us to obtain the numerical results beyond
the previous work [27], which exhibits the coincidence
between parallel and sequential optimal protocols for n ≤
d − 1 [32]. The codes are available at Ref. [44] under the
MIT license [57].
Discussions.—We compare the deterministic exact uni-

tary inversion with the previously known protocols for
qubit-unitary inversion. We consider the required number
of calls of the input unitary operation to achieve success
probability p ¼ 1 − η and/or average-case channel fidelity
F ¼ 1 − ϵ, i.e., η and ϵ represent a failure probability and
an approximation error of the protocol, respectively. The
best-known protocol for probabilistic exact unitary inver-
sion uses a “success-or-draw” strategy [20,21,58], which
requires n ¼ Oðlog η−1Þ calls of the input unitary operation
to achieve the success probability p ¼ 1 − η. We can
convert this protocol to a deterministic nonexact protocol
[27], which requires n ¼ Oðlog ϵ−1Þ to achieve the aver-
age-case channel fidelity F ¼ 1 − ϵ. On the other hand, the
qubit-unitary inversion protocol presented in this Letter
achieves η ¼ ϵ ¼ 0with n ¼ Oð1Þ. Therefore, our protocol
is superior to the protocols in the previous works regarding
the scaling of n with respect to failure probability η and
approximation error ϵ (see Table II and Supplemental
Material [32] for the detail).

As shown in Refs. [21,27], any protocol using 3 calls of a
qubit-unitary operation cannot implement unitary inversion
deterministically and exactly. Thus, the protocol shown in
this Letter uses the minimum number of calls of a qubit-
unitary operation. However, this fact does not mean that all
information on the input unitary operation Uin is “con-
sumed” in the unitary inversion protocol. Protocols “con-
suming” all information of the input unitary operations are
analyzed as clean protocols, namely, the protocols where
the auxiliary system used for the protocol does not depend
on the input unitary operation, in Ref. [31]. As shown in
Ref. [31], clean protocols of exact unitary inversion using n
calls of an input d-dimensional unitary operation do not
exist when n ≠ −1 mod d. The protocol shown in this
Letter avoids this no-go theorem by removing the restric-
tion that the protocols be clean. In fact, the output state of
the auxiliary system is given by jψUin

i ⊗ j0i⊗4, which
stores some information aboutUin. As shown in Eq. (1), the
quantum state jψUin

i can be used as a catalyst, i.e., it can be
reused in another run of the unitary inversion of the same
unitary operation Uin. This is a possible application of the
stored information about the input operation in output
auxiliary states of nonclean protocols.
On the other hand, our qubit-unitary inversion protocol

can be made clean by adding an extra call of the input
unitary operation Uin. We can remove the information of
Uin stored in the quantum state jψUin

i by applyingUin since

ð1 ⊗ UinÞjψUin
i ¼ U⊗2

in jψ−i ¼ jψ−i holds. Since nonclean
protocols require a thermodynamic cost to erase the
information [59,60], the clean unitary inversion protocol
has the potential to reduce the thermodynamic cost of
quantum computation.
Conclusion.—In this Letter, we constructed a determin-

istic exact unitary inversion protocol using 4 calls of input
qubit unitary operation Uin ∈SUð2Þ in sequence. This
transformation can be regarded as a transformation from
3 calls of Uin to its inverse operation U−1

in with a catalyst
state jψUin

i as shown in Eq. (1), and we can make the
protocol clean by adding an extra use of Uin. We leave it a
future work to investigate general higher-order quantum
transformations with catalyst states.

TABLE I. The optimal value of the SDP (9) is numerically
obtained for n ≤ 5 and d ≤ 6, which is the optimal fidelity of a
deterministic transformation from n calls of an unknown unitary
operation Uin ∈ SUðdÞ to its inverse operation U−1

in .

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

d ¼ 2 0.5000 0.7500 0.9330 1.0000 1.0000
d ¼ 3 0.2222 0.3333 0.4444 0.5556 0.6667
d ¼ 4 0.1250 0.1875 0.2500 0.3125 0.3750
d ¼ 5 0.0800 0.1200 0.1600 0.2000 0.2400
d ¼ 6 0.0556 0.0833 0.1111 0.1389 0.1667

TABLE II. Comparison of our deterministic exact qubit-unitary inversion with previous works. The query complexity is the number of
calls of the input operation with respect to failure probability η and/or approximation error ϵ.

Deterministic Exact Query complexity

Universal refocusing [16] × × Oðη−5 log2 ϵ−1Þ
Optimal parallel protocol (probabilistic exact) [19–21] × ✓ Oðη−1Þ
Optimal parallel protocol (deterministic nonexact) [27] ✓ × Oðϵ−1=2Þ
Success-or-draw (probabilistic exact) [20,21,58] × ✓ Oðlog η−1Þ
Success-or-draw (deterministic nonexact) [27] ✓ × Oðlog ϵ−1Þ
Universal rewinding [28,29] × ✓ Oðlog η−1Þ
This Letter ✓ ✓ Oð1Þ
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We also presented the SDP approach to seek determin-
istic exact unitary inversion for d > 2. We showed the
simplification of the SDP using the SUðdÞ × SUðdÞ sym-
metry, which enables numerical calculation up to n ≤ 5.
Reference [61] presents the reduction of SDPs with SUðdÞ
symmetry and additional symmetry to linear programming.
It is an interesting future work to invent a similar technique
for the SDP of unitary inversion, which will be applied to
seek deterministic exact unitary inversion for d > 2.
We can also extend the qubit-unitary inversion protocol

presented in this Letter to a protocol reversing any qubit-
encoding isometry operations, namely, quantum operations
transforming qubit pure states to qudit pure states. This
extension is done by constructing a quantum circuit trans-
forming unitary inversion protocols to isometry inversion
protocols, which will be presented in another work [62].
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