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Quantum computers have recently become available as noisy intermediate-scale quantum devices.
Already these machines yield a useful environment for research on quantum systems and dynamics.
Building on this opportunity, we investigate open-system dynamics that are simulated on a quantum
computer by coupling a system of interest to an ancilla. After each interaction the ancilla is measured, and
the sequence of measurements defines a quantum trajectory. Using a thermodynamic analogy, which
identifies trajectories as microstates, we show how to bias the dynamics of the open system in order to
enhance the probability of quantum trajectories with desired properties, e.g., particular measurement
patterns or temporal correlations. We discuss how such a biased—generally non-Markovian—dynamics
can be implemented on a unitary, gate-based quantum computer and show proof-of-principle results on the
publicly accessible ibmq_jakarta machine. While our analysis is solely conducted on small systems, it
highlights the challenges in controlling complex aspects of open-system dynamics on digital quantum
computers.
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Introduction.—Awidely pursued quest in contemporary
physics research concerns the realization of a universal
quantum computer. However, while fundamental issues—
such as scalability and the necessity of error correction—
have been identified [1–5], the availability of a fault-
tolerant machine, which is able to implement arbitrary
unitary circuits, may still be years away. Currently available
quantum computation platforms belong to the class of
noisy intermediate-scale devices [5–7]. Nevertheless, these
machines constitute intriguing systems for conducting
proof-of-principle studies, for testing the efficient imple-
mentation of quantum algorithms, and for making con-
ceptual progress in the understanding of the utility of
quantum computers [8–22].
In this Letter we focus on open-system dynamics

implemented on a quantum computer via unitary gates
[20,23–29]. The basis for this approach is the so-called
collision model [20,30–33]. Here irreversible open-system
dynamics is generated by creating entanglement between
the system of interest and a series of ancillary two-level
systems, as depicted in Fig. 1(a). Measuring the ancillas
generates so-called quantum trajectories [cf. Fig. 1(b)]
which carry information on the dynamical evolution of
the system. We show how to bias the properties of these
trajectories, such as the rate of certain measurement out-
comes on the ancillas and their temporal correlations. Our
biasing protocol relies on interpreting a trajectory as a
microstate of a fictitious spin system. Defining an “energy”
function similar to that of the Ising model, we derive a
dynamics, which enhances or reduces the probability of

FIG. 1. Open-system dynamics and quantum trajectories in the
collision model. (a) The two-level system, in the initial state jψ0i,
collides sequentially with ancillas (also two-level systems) all
prepared in the j0i state. During a collision the system and an
ancilla interact via an exchange interaction visualized in the inset;
see also Eq. (1). (b) The outcomes kn of projective measurements
on the ancillas produce a quantum trajectory, whose jth reali-

zation is denoted by kðjÞ ¼ ðkðjÞ1 ;…; kðjÞN Þ. This trajectory occurs
with a probability PðkðjÞÞ. We formally bias the statistics of the
ensemble of trajectories by reweighting the probabilities with
respect to the “energy” function Op;qðkÞ, where p and q are
coupling constants and s can be interpreted as “inverse tempera-
ture.” The probability distribution for observing the outcome
kn ¼ 1, when measuring the state of the nth ancilla, is shown at
the bottom, for the original as well as the reweighted, i.e., biased,
ensemble.
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certain trajectories in close resemblance to the Boltzmann
weight of equilibrium statistical mechanics, as highlighted
in Fig. 1(b). We show how such a deformed—at first glance
unphysical—probability can be obtained on a quantum
computer. Our study broadens the spectrum of use cases for
quantum computers within the domain of nonequilibrium
quantum systems, and provides first proof-of-principle
results on the ibmq_jakarta machine.
Collision model.—We consider a quantum system sub-

ject to a Markovian discrete-time collision-model dynam-
ics, illustrated in Fig. 1(a). The system state is encoded in
the pure state jψi and, within each discrete time step, it
collides with an ancillary two-level system described
through the computational basis fj0i; j1ig. We assume
that each ancilla is initialized in the reference state j0i and
that the system-ancilla interaction is described by a unitary
U ¼ e−ih, with h a Hermitian operator. After the collision,
the ancilla is measured in the computational basis. This
results in a stochastic evolution for the system described in
terms of Kraus operators Kk ¼ hkjUj0i [30,31]. Indeed,
with probability Pk ¼ kKkjψik2, the measurement out-
come k is observed for the ancilla and the system evolves
as ½ðKkjψiÞ=

ffiffiffiffiffiffi
Pk

p �. Performing N collisions and measure-
ments yields a quantum trajectory k ¼ ðk1;…; kNÞ as
shown in Fig. 1(b). The probability for the occurrence of
a specific trajectory is PðkÞ ¼ kKkN…Kk1 jψ0ik2. The
discrete-time dynamics of the state of the system, averaged
over all possible measurement outcomes, is described by
the Kraus map E½ρ� ¼Pk KkρK

†
k.

We study here the simplest case in which the system is a
two-level system, just like the ancillas. Furthermore, we set

h ¼ ωð1 ⊗ σxÞ þ κðσþ ⊗ σ− þ σ− ⊗ σþÞ; ð1Þ

with σ− ¼ σ†þ ¼ j0ih1j and σx ¼ σ− þ σþ. Throughout, we
set the parameters to ω ¼ κ ¼ 1 and select jψ0i ¼ j0i as
the initial state of the system. Contrarily to this genuine
discrete-time dynamics, by introducing a time unit Δt
together with the rescaling ω → ωΔt and κ →

ffiffiffiffiffiffiffiffi
κΔt

p
,

we note that the system dynamics converges in the limit
Δt → 0 toward the continuous-time Lindblad equation
of a two-level atom with Rabi frequency ω and decay rate
κ (see the Supplemental Material [34] for details).
Biased quantum trajectories.—Given that the ancillas are

two-level systems, each quantum trajectory k ¼ ðk1;…; kNÞ
is a sequence of zeros and ones. Within a thermodynamic
analogy (see also, e.g., Refs. [38–42]), each of these sequen-
ces can be interpreted as a microscopic configuration (micro-
state) of a fictitious one-dimensional Ising spin system. The
probability over these microstates is then given by PðkÞ. In
the standard thermodynamic approach,PðkÞ is assumed to be
a flat probability [39]. Here, however, the collision model
provides, in general, a nonflat probability PðkÞ, which
nevertheless does not spoil the thermodynamic analogy.

Our goal is to reweigh (or bias) this probability by using
an “energy” function [see Fig. 1(b)]

Op;qðkÞ ¼
XN
n¼1

pnkn þ
XN
n;m¼1
n>m

qnmknkm; ð2Þ

defined in terms of the set of real coefficients fpn; qnmg. In
analogy with the Ising model, the vector p ¼ ðp1;…; pNÞ
encodes the interaction of the spin system with an (possibly
inhomogeneous) external field, while thematrix q, collecting
all the terms qnm, describes the two-spin interacting
energy. The reweighting (or biasing) is formally achieved
by introducing the canonical Gibbs probability Pðk; sÞ ∝
e−sOp;qðkÞPðkÞ, in which e−sOp;qðkÞ represents a Boltzmann
weight. Within this thermodynamic construction, the para-
meter s in the biasing factor serves as an “inverse temper-
ature” [35,40,43]. The probability of the different quantum
trajectories is then modified on demand by tuning the
“temperature,” as well as the “energy” function, such that
the outcome of the measurements tends to minimize
sOp;qðkÞ. This allows one to steer the properties of the
quantum trajectories, such as the frequency of certain
measurement outcomes and interestingly also their correla-
tions. As we demonstrate below, it is possible to devise an
appropriate system-ancilla interaction such that the so-far
artificially constructed reweighted ensemble Pðk; sÞ
becomes the physical ensemble of a bona-fide collision-
model dynamics, which can be implemented on a quantum
computer.
Noninteracting “energy” function.—We first consider a

simple “energy” function, which solely contains external
fields, p ¼ ðp1;…; pNÞ, i.e.,

OpðkÞ ¼
XN
n¼1

pnkn ¼ p · k: ð3Þ

To generate the reweighted ensemble Pðk; sÞ we exploit an
auxiliary quantum map, the so-called tilted Kraus map,
which biases the probability of each quantum trajectory
through the desired factor e−sOpðkÞ. This tilted map reads,
for a single time step, as

Esn ½ρ� ¼ K0ρK
†
0 þ e−snK1ρK

†
1;

with sn ¼ spn. While assigning the correct weights to the
different trajectories, this map does not implement a
physical dynamics since, for sn ≠ 0, it violates trace
preservation [31,35,36]. Nonetheless, a physical process
described by the reweighted ensemble [44] can be con-
structed [34]. It consists of a map with, in general, time-
dependent (i.e. dependent on the collision number n) Kraus
operators
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K̃n
0 ¼ GnK0G−1

n−1; ð4Þ

K̃n
1 ¼ e−sn=2GnK1G−1

n−1 ð5Þ

for the nth collision. Moreover, the initial state needs to be
rotated according to

Rijψ0i ¼
G0jψ0i

kG0jψ0ik
: ð6Þ

The Hermitian matrices Gn, are given recursively as

Gn−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�
sn ½G2

n�
q

; ð7Þ

using the dual tilted Kraus map E�
sn and setting the final-

time conditionGN ¼ 1 (see the Supplemental Material [34]
for details).
In the following we discuss a few examples, for which

the corresponding data are shown in Fig. 2. The simplest
case [panel (a)] is that of a uniform field, pn ¼ 1.
According to the sign of s, this choice increases or
decreases the probability of quantum trajectories according
to the total amount of kn ¼ 1 measurement outcomes they
contain [see also Fig. 1(b)]. Conversely, with a staggered
field [panel (b)] pn ¼ ð−1Þn we can bias quantum

trajectories toward an imbalance between odd and even
spins, i.e., showing alternating measurement outcomes at
odd and even times. An even more general case [panel (c)]
is that of a random sequence of local external fields, i.e.,
pn ∈ f�1g. In Fig. 2 we show numerical results obtained
for all three cases. The black data show the probabilities
of the original, i.e., unbiased, dynamics. Throughout,
we observe that for a positive value of s (red data) the
probability of trajectories that minimize the scalar product
p · k, i.e., the “energy” function (3), is enhanced.
Conversely, for negative s trajectories that maximize p · k
become dominant.
In the following we show how the biased dynamics can

be implemented on an actual digital quantum processor. To
do this, we first need to unravel the Kraus map defined by
the operators fK̃n

kn
g1kn¼0 into a unitary collision model with

an auxiliary ancilla [17]. The existence of such a unitary is
guaranteed by the Stinespring dilation theorem [11,45].
The desired Kraus operators are obtained when choosing
for the nth collision the operator (see the Supplemental
Material [34] for details)

Ũn ¼
 
K̃n

0 …

K̃n
1 …

!
: ð8Þ

The rectangular submatrix containing K̃n
0 and K̃n

1 is an
isometry, since K̃n†

0 K̃n
0 þ K̃n†

1 K̃n
1 ¼ 1. The other columns

do not participate to the collision-model dynamics, and we
can thus fill them with additional orthogonal column
vectors. In this way, the isometry is promoted to a unitary
operator encoding the system-ancilla collision. This

FIG. 2. Noninteracting “energy” function. (a),(b) Shown is the
probability P for obtaining a trajectory with a given value of p · k.
The black data correspond to the original, i.e., unbiased, process
(s ¼ 0), while the red (blue) data correspond to the biased process
with s ¼ 2 (s ¼ −2). Each dataset contains two subsets: the lines
above the shaded areas are numerically exact results, obtained
from computing the probabilities PðkÞ ¼ kKkN…Kk1 jψ0ik2 and
reweighting them appropriately. The crosses are obtained by
classically simulating 20 000 trajectories generated from the
biased Kraus map, Eqs. (4) and (5). The statistical error is smaller
than the marker size. In panel (c) we show the probability as a
function of p · k and also at the level of individual
trajectories k.

FIG. 3. Quantum simulations of the biased dynamics for a
uniform field. (a) The quantum circuit used to implement the
biased dynamics consists of an initial rotation Ri applied to the
system S as well as adapted collision unitaries Ũn. Arrows
indicate which qubits collide. The transpiled version of this
quantum circuit is run on the ibmq_jakarta quantum proc-
essor. The obtained data are evaluated with respect to (b) the
“energy” p · k and (c) the individual trajectories k. We used
20 000 samples.
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procedure allows us to construct the quantum circuit shown
in Fig. 3(a), which must be transpiled using the gates
available for the chosen quantum processor, a task which is
left unsupervised to the Qiskit library [37].
In Figs. 3(b) and 3(c), we show results from quantum

simulations of our trajectories on the 7-qubit quantum
processor ibmq_jakarta. The obtained probabilities for
the original and the modified trajectory ensemble (circles)
show good agreement with the exact probabilities (shaded),
both as a function of the scalar product p · k and at the level
of individual trajectories k. In contrast to the classical
simulation results, displayed in Fig. 2, some deviations can
be observed, that exceed the statistical error bounds (which
are smaller than the marker size). This points toward the
presence of a systematic error in the quantum processor due
to a noisy implementation of the unitary gates [5–7,46–48].
Interacting “energy” function.—We now turn to the

more interesting case of interacting “energy” functions,
which permit the bias of time correlations among ancillary
measurements within quantum trajectories. For concrete-
ness, we consider here the following nearest-neighbor
function

ONNðkÞ ¼
XN
n¼2

σnσn−1; ð9Þ

with σn ¼ 1–2kn. In our thermodynamic analogy, this
function corresponds to a classical Ising energy, and large
values of ONNðkÞ are associated with microstates in which
neighboring spins are aligned, i.e., measurements on
consecutive ancillas yield the same outcome. Compared
with noninteracting “energy” functions, this case is more
challenging to treat since the biasing at a given discrete-
time step n depends on the outcome of the measurement of
the previous ancilla’s state. The ensuing tilted map needs to
involve all collisions and can no longer be split into
independent maps. It reads (see the Supplemental
Material [34] for details) as

ρ →
X

k∈ f0;1gN
ðTsÞkN;kN−1

∘…∘ðTsÞk2;k1∘ðTsÞk1 ½ρ�;

where

ðTsÞkn;kn−1 ½ρ� ¼ e−sσnσn−1KknρK
†
kn

ð10Þ

and ðTsÞk1 ½ρ� ¼ Kk1ρK
†
k1
. The matrices Ts are transfer

matrices with entries given by maps rather than numbers.
As for the noninteracting case, the tilted map cannot
describe a physical process since it is not trace preserving
for s ≠ 0. Nonetheless, an actual physical process that
creates the reweighted ensemble can be found also in this
case of interacting “energy” functions. For the nth collision
this is defined by the Kraus operators fK̃n

knjkn−1g1kn¼0

conditioned on the outcome kn−1 of the measurement at
time n − 1 and given by

K̃n
knjkn−1 ¼ e−sσnσn−1=2GnjknKknG

−1
n−1jkn−1 ; ð11Þ

with

Gn−1jkn−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
kn¼0

ðT�
sÞkn;kn−1 ½G2

njkn �
vuut ; ð12Þ

setting GNjkN ¼ 1 for all kN . We note, that G0j0¼G0j1¼G0

and the initial state is modified according to the rotation
given by Eq. (6). This construction can be extended to more
general “energy” functions, for example functions which
depend on strings of measurement outcomes, k1k2k3…kN .
This allows one to modify any n-time correlation function
of the trajectory ensemble.
To implement this conditioned non-Markovian biased

dynamics on a quantum processor, the first step is once
again to promote each conditioned Kraus map, given by the
operators in Eq. (11), into a unitary collision, Ũnjkn−1 , with
an ancilla, in analogy to Eq. (8). Then, we introduce the
projector on the state of the ancilla jkn−1ihkn−1j at time step
n − 1 and construct the 3-qubit unitary

Ṽn ¼
X
kn−1

jkn−1ihkn−1j ⊗ Ũnjkn−1 ;

which implements the collision Ũnjkn−1 on the system and
on the nth ancilla, according to the outcome of the
measurement kn−1 on the previous ancilla. The structure
of these unitaries further highlights the non-Markovian
character of the biased dynamics, which thus takes the form
of an extended collision model. The corresponding quan-
tum circuit is shown in Fig. 4(a).
In Figs. 4(b) and 4(c) we report results from both

classical numerical simulation (crosses) and the quantum
simulations (circles) of this biased dynamics. As antici-
pated, the classical simulation results, obtained from
trajectory sampling, agree excellently with the reweighted
probabilities. However, the probabilities sampled via the
quantum simulations display significant systematic errors,
both when plotted as a function of ONN and when resolved
for individual trajectories k. We attribute these errors to the
substantial depth of the transpiled circuit, which is mainly
due to the representation of the 3-qubit gates in terms of the
basis gates of the device [17]: even small single-gate errors,
as for instance the controlled NOT error which is smaller
than 1% according to the most recent calibration, accu-
mulate and give rise to an effective dynamics which is
rather different from the desired one [19]. To our under-
standing, simple error mitigation techniques regarding
measurement errors [20] or zero-noise extrapolation [10]
are not sufficient to eliminate the noise introduced in the
dynamics, at least not when using the unsupervised tran-
spiling of the circuit. In the Supplemental Material [34] we
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discuss how Qiskit allows for an a priori estimate on the
errors to be expected from the quantum simulations.
Conclusions.—We have shown how to bias the dynami-

cal behavior, e.g., the temporal correlations, of the output of
open quantum systems on a quantum computer. Our
approach is based on a thermodynamic analogy, where
the probability of a given trajectory is modified through an
“energy” function. Simple, i.e., noninteracting, “energy”
functions can be rather reliably implemented. However, the
inclusion of interactions in order to enhance correlations
between output measurements on the ancillas appears to
exhaust the capability of the ibmq_jakartamachine, on
which we conducted our study. The ultimate reason appears
to be that the interacting case requires the implementation
of three-body gates, which are transpiled into relatively
deep circuits. This shows that already the quantum simu-
lation and manipulation of short trajectories of a two-level
system is a difficult task and illustrates the enormous
challenge of faithfully simulating and engineering open
many-body quantum dynamics with quantum computers.
Advances in circuit design, such as dynamic circuits that
allow in situ feedback based on measurement results, may
help to improve this situation [49,50]. Also, the ability of
resetting and reusing ancillas will of course allow one to
implement more collisions and thus longer evolution times.
So far, we calculated the quantum circuit yielding the

biased dynamics in advance on a classical computer. In the
future it would be interesting to investigate whether this is
indeed necessary or whether the corresponding maps can
be directly computed and implemented on a quantum
device.

The code and the data that support the findings of this
Letter are available on Zenodo [51].
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