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Incompatible, i.e., nonjointly measurable quantum measurements are a necessary resource for many
information processing tasks. It is known that increasing the number of distinct measurements usually
enhances the incompatibility of a measurement scheme. However, it is generally unclear how large this
enhancement is and on what it depends. Here, we show that the incompatibility which is gained via
additional measurements is upper and lower bounded by certain functions of the incompatibility of subsets
of the available measurements. We prove the tightness of some of our bounds by providing explicit
examples based on mutually unbiased bases. Finally, we discuss the consequences of our results for the
nonlocality that can be gained by enlarging the number of measurements in a Bell experiment.
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The incompatibility of quantum measurements, i.e., the
impossibility of measuring specific observable quantities
simultaneously, is one of quantum physics’ most prominent
and striking properties. First discussed byHeisenberg [1] and
Robertson [2], this counterintuitive feature was initially
thought of as a puzzling curiosity that represents a drawback
for potential applications. Nowadays, measurement incom-
patibility [3,4] is understood as a fundamental property of
nature that lies at the heart of many quantum information
processing tasks, such as quantum state discrimination
[5–10], quantum cryptography [11,12], and quantum random
access codes [13,14]. Even more importantly, incompatible
measurementsarea crucial requirement for quantumphenom-
ena such as quantum contextuality [15], Einstein-Podolsky-
Rosen (EPR) steering [16,17], and Bell nonlocality [18].
Its fundamental importance necessitates gaining a deep

understanding of measurement incompatibility from a
qualitative and quantitative perspective. By its very defi-
nition, measurement incompatibility arises when at least
m ≥ 2 measurements are considered that cannot be mea-
sured jointly by performing a single measurement instead.
Generally, adding more measurements to a measurement
scheme may allow for more incompatibility, hence increas-
ing advantages in certain applications.
However, it is unclear how much incompatibility can be

gained from adding further measurements to an existing
measurement scheme and on what this potential gain
depends. Similarly, it is unclear how the incompatibility
of measurement pairs contributes towards the total incom-
patibility of the whole set. Answering these questions is
crucial to understanding specific protocols’ power over
others, such as protocols involving different numbers of
mutually unbiased bases (MUBs) in quantum key distri-
bution [11,19]. While it is known [20] that the different
incompatibility structures (e.g., genuine triplewise and
pairwise incompatibility) arising for m ≥ 3 measurements

set different limitations on the violation of Bell inequalities
and incompatibility structures beyond two measurements
have also been studied in [21–23], so far, no systematical
way to quantify the gained advantage is known.
The systematical and quantitative analysis of incompat-

ibility structures in this work is inspired by the analysis of the
distribution of multipartite entanglement [24] and coherence
[25], leading to the observation that these quantum resources
behave monogamously across subsets of systems. Despite
the mathematical differences, our work follows physically a
similar path by studying the distribution of quantum incom-
patibility across subsets of measurements. Namely, we show
how an assemblage’s incompatibility depends quantitatively
on its subsets’ incompatibilities. More specifically, we show
how the potential gain of addingmeasurements to an existing
measurement scheme is bounded by the incompatibility of
the parent positive operator valued measures (POVMs) that
approximate the respective subsets of measurements by a
single measurement.
Our results reveal the polygamous nature of measure-

ment incompatibility in the sense that an assemblage of
more than two measurements can only be highly incom-
patible if all its subsets and the respective parent POVMs of
the closest jointly measurable approximation of these
subsets are highly nonjointly measurable. Our consider-
ations lead to a new notion of measurement incompatibility
that accounts only for a specific measurement’s incompat-
ibility contribution. We prove the relevance of our bounds
on the incompatibility that can maximally be gained by
showing that they are tight for particular measurement
assemblages based on MUBs. Finally, we show that our
results have direct consequences for steering and Bell
nonlocality and discuss future applications of our results
and methods.
Preliminaries.—We describe a quantum measurement

most generally by a POVM, i.e., a set fMag of operators
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0 ≤ Ma ≤ 1 such that
P

a Ma ¼ 1. Given a state ρ, the
probability of obtaining outcome a is given by the Born
rule pðaÞ ¼ Tr½Maρ�. A measurement assemblage is a
collection of different POVMs with operators Majx, where
x denotes the particular measurement. We write an assem-
blage Mð1;2;…;mÞ ¼ ðM1;M2;…;MmÞ of m measure-
ments as an ordered list of POVMs, where Mx refers to
the xth measurement. For instance, Mð1;2;3Þ ¼ ðM1;M2;
M3Þ refers to an assemblage with three (different) mea-
surements and Mð1;2;2Þ ¼ ðM1;M2;M2Þ denotes an
assemblage where the second and the third POVM are
equal.
An assemblage M is called jointly measurable if it can

be simulated by a single parent POVM fGλg and condi-
tional probabilities pðajx; λÞ such that

Majx ¼
X

λ

pðajx; λÞGλ ∀ a; x; ð1Þ

and it is called incompatible otherwise. Here, we call
GðMÞ a parent POVM of a jointly measurable assemblage
M. Various functions can quantify measurement incom-
patibility [26–28]. The most suitable incompatibility quan-
tifier for our purposes is the recently introduced diamond
distance quantifier [29], given by

I⋄ðMpÞ ¼ min
F ∈ JM

X

x

pðxÞD⋄ðΛMx
;ΛF x

Þ; ð2Þ

where JM denotes the set of jointly measurable assemb-
lages, ΛMx

¼ P
a Tr½Majxρ�jaihaj is the measure-and-

prepare channel associated to the measurement Mx, and
D⋄ðΛ1;Λ2Þ ¼ maxρ∈SðH⊗HÞ 12 k½ðΛ1 − Λ2Þ ⊗ 1d�ρk1 is the
diamond distance [30] between two channels Λ1 and Λ2,
with the trace norm kXk1 ¼ Tr½

ffiffiffiffiffiffiffiffiffi
X†X

p
�. Furthermore,

Mp ¼ ðM;pÞ denotes a weighted measurement assem-
blage, where p contains the probabilities pðxÞ with which
measurement x is performed. Note that I⋄ðMpÞ is induced
by the general distanceD⋄ðMp;N pÞ ≔ P

x pðxÞD⋄ðΛMx
;

ΛN x
Þ between two assemblages Mp and N p.

We denote by M#
ð1;2;…;mÞ the closest jointly measurable

assemblage with respect to Mð1;2;…;mÞ, i.e., the arg min on
the rhs in Eq. (2). While M#

ð1;2;…;mÞ and its underlying
parent POVM are generally not unique [22,31], all the
results derived in this work hold for any valid choice, as we
do not assume uniqueness. If we only approximate a subset
of n < m measurements of Mð1;2;…;mÞ by jointly measur-
able ones, for instance the first n settings, while keeping the

remaining measurements unchanged, we write M#ð1;2;…;nÞ
ð1;2;…;mÞ .

The diamond distance quantifier I⋄ðMpÞ [29] is par-
ticularly well suited for our purposes, as it is not only
monotonous under the application of quantum channels
and classical simulations but it also inherits all properties
of a distance [in particular the triangle inequality of

D⋄ðMp;N pÞ], and it is written in terms of a convex
combination of the individual measurement’s distances.
Besides these technical requirements, the quantifier

I⋄ðMpÞ admits the operational interpretation of average
single-shot distinguishability of the assemblageM from its
closest jointly measurable assemblageM#. Furthermore, it
can be used to upper bound the amount of steerability and
nonlocality that can be revealed by the measurementsM in
Bell-type experiments [29].
For pedagogical reasons, we focus in the main text on the

scenario 2 → 3, i.e., we consider an assemblage of m ¼ 2
measurements that is promoted to one withm0 ¼ 3 settings.
Furthermore, we set pðxÞ to be uniformly distributed and
simply use the symbol M for the weighted assemblage in
this case. We refer to the Supplemental Material (SM) [32]
for all proofs, more background information, and general-
izations to an arbitrary number of measurements and
general probability distributions.
Adding a third measurement M3 to the assemblage

Mð1;2Þ ¼ ðM1;M2Þ is mathematically described by the
concatenation of ordered lists, using the symbol ⧺, i.e., we
write

Mð1;2;3Þ ¼ Mð1;2Þ⧺M3 ¼ ðM1;M2;M3Þ: ð3Þ

Using the concatenation of ordered lists, we formally define

M#ð1;2Þ
ð1;2;3Þ such that

M#ð1;2Þ
ð1;2;3Þ ≔ M#

ð1;2Þ⧺M3: ð4Þ

Three measurements allow for incompatibility structures
[20–23] beyond Eq. (1). We define the sets JMðs;tÞ with
s ≠ t∈ f1; 2; 3g as those containing assemblages in which
the measurements s and t are jointly measurable. This
allows us to define pairwise and genuinely triplewise
incompatible assemblages [20] as those that are not
contained in the intersection and the convex hull of the
sets JMðs;tÞ, respectively. See also Fig. 1 for a graphical
representation and more details.
Incompatibility gain.—We investigate the incompatibil-

ity gain obtained from adding measurements to an already
available assemblage. That is, for an assemblage Mð1;2;3Þ
defined via Eq. (3) we want to quantify the gain

ΔIð1;2Þ→ð1;2;3Þ ≔ I⋄ðMð1;2;3ÞÞ − I⋄ðMð1;2ÞÞ: ð5Þ

Note that ΔIð1;2Þ→ð1;2;3Þ is the difference of two quantities
that can be computed via semidefinite programs (SDPs)
[29], however, the purely numerical value of the gained
incompatibility does only provide limited physical insights
by itself. While it seems generally challenging to find an
exact analytical expression for the incompatibility gain, we
will derive bounds on it in the following.
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Our approach relies on a two-step protocol. First, we
employ a measurement splitting, i.e., instead of considering
the incompatibility of Mð1;2;3Þ, we consider the incompat-
ibility I⋄ðMð1;2;1;3;2;3ÞÞ. That is, each measurement of
Mð1;2;3Þ is now split up into two equivalent ones, each
occurring with a probability of 1

6
. Furthermore, it holds

I⋄ðMð1;2;3ÞÞ ¼ I⋄ðMð1;2;1;3;2;3ÞÞ since the assemblages can
be converted into each other by (reversible) classical
postprocessing [32] (Sec. II). The second step involves a
particular instance of the triangle inequality and uses
specifically that I⋄ðMÞ is defined as a convex combination
over the individual settings. More precisely, let

N ¼ M#
ð1;2Þ⧺M

#
ð1;3Þ⧺M

#
ð2;3Þ; ð6Þ

be an assemblage that contains itself three assemblages (of
two measurements each) that are the closest jointly meas-
urable approximations with respect to the individual sub-
sets of Mð1;2;3Þ. We point out that N itself can be
incompatible in general. Using the triangle inequality, it
follows that

I⋄ðMð1;2;3ÞÞ ¼ I⋄ðMð1;2;1;3;2;3ÞÞ
≤ D⋄ðMð1;2;1;3;2;3Þ;N Þ þ I⋄ðN Þ: ð7Þ

Because of our choice of N , the term D⋄ðMð1;2;1;3;2;3Þ;N Þ
evaluates to the average incompatibility of the subsets, as
we can split the sum over all six settings into three pairs,
i.e., we obtain

I⋄ðMð1;2;3ÞÞ ≤
1

3
½I⋄ðMð1;2ÞÞ þ I⋄ðMð1;3ÞÞ

þ I⋄ðMð2;3ÞÞ� þ I⋄ðN Þ: ð8Þ

That is, the incompatibility ofMð1;2;3Þ is upper bounded by
the average incompatibility of its two-measurement subsets
plus the incompatibility I⋄ðN Þ that contains the informa-
tion about how incompatible the respective closest jointly
measurable POVMs are with each other. Notice that
I⋄ðN Þ ≤ I⋄ðGÞ holds, where

G ¼ GðM#
ð1;2ÞÞ⧺GðM#

ð1;3ÞÞ⧺GðM#
ð2;3ÞÞ ð9Þ

is the assemblage that contains the parent POVMs G of the
respective subsets, as N is a classical postprocessing of G
[32] (Sec. II). This shows that the incompatibility of
Mð1;2;3Þ is limited on two different levels through its
subsets. Moreover, it reveals a type of polygamous behav-
ior of incompatibility. For high incompatibility of Mð1;2;3Þ
each of the subsets, as well as the underlying parent
POVMs of the respective jointly measurable approxima-
tions, have to be highly incompatible. Coming back to the
incompatibility gain, we are ready to present our first main
result.
Result 1.—Let I⋄ðMð1;2ÞÞ ≥ maxfI⋄ðMð1;3ÞÞ;

I⋄ðMð2;3ÞÞg. It follows that the incompatibility gain as
defined in Eq. (5) is bounded such that

ΔIð1;2Þ→ð1;2;3Þ ≤ I⋄ðN Þ ≤ I⋄ðGÞ: ð10Þ

This means that the potential incompatibility gain is
limited by the incompatibility of the assemblage N in
Eq. (6), i.e., the concatenation of the respective closest
jointly measurable approximations of the subsets.
Physically more intuitive, it is limited by the incompatibility
of the assemblage that contains the respective parent
POVMs. The assumption I⋄ðMð1;2ÞÞ ≥ maxfI⋄ðMð1;3ÞÞ;
I⋄ðMð2;3ÞÞg represents no loss of generality for all practical
purposes, as one can simply optimize over all possible two-
measurement subsets.
We show in the SM [32] that Result 1 can begeneralized to

ΔIð1;…;mÞ→ð1;…;m;mþ1Þ ≤ I⋄ðN Þ ≤ I⋄ðGÞ; ð11Þ

by appropriately redefining N and G.
We point out that Result 1 allows for the definition of a

single maximally incompatible additional measurement, in
the sense that it is the measurementM3 that maximizes the
incompatibility gain ΔIð1;2Þ→ð1;2;3Þ for a given assemblage

FIG. 1. Different structures of incompatibility for three mea-
surements, see also Ref. [20]. The sets JMðs;tÞ contain assemblages
of measurements where the pairs ðs; tÞ are compatible. Their
intersection JMpair ≔ JMð1;2Þ ∩ JMð1;3Þ ∩ JMð2;3Þ contains all pair-
wise compatible assemblages, with the set JM of all jointly
measurable assemblages as a proper subset. Assemblages not
contained in the convex hull JMconv ≔ ConvðJMð1;2Þ; JMð1;3Þ;
JMð2;3ÞÞ of the sets JMðs;tÞ, i.e., those that cannot be written as a
convex combination of assemblages from the sets JMð1;2Þ, JMð1;3Þ,
and JMð2;3Þ are genuinely triplewise incompatible. The incompat-
ibility of Mð1;2;3Þ is given by the distance to its closest jointly
measurable approximation M#

ð1;2;3Þ. This distance can be upper

bounded using the triangle inequality via the assemblageM#ð1;2Þ
ð1;2;3Þ.
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Mð1;2Þ. As an illustrative example, we consider the three
projective measurements fΠajxg which represent the Pauli
X, Y, Z observables subjected to white noise, i.e., we
analyze the incompatibility of the assemblage Mη

ð1;2;3Þ ¼
ðMη

1;M
η
2;M

η
3Þ defined via

Mη
ajx ¼ ηΠajx þ ð1 − ηÞTr½Πajx�

1
2
; ð12Þ

where (1 − η) is the noise level. It holds in this particular
case that (see Fig. 2)

ΔIð1;2Þ→ð1;2;3ÞðηÞ ¼ I⋄½N ðηÞ�; ð13Þ

which we prove analytically in the SM [32] (Sec. VI). For
the regime ð1= ffiffiffi

2
p Þ ≤ η ≤ 1 we also show that I⋄½N ðηÞ� ¼

I⋄ðM1=
ffiffi
2

p
ð1;2;3ÞÞ, which means that the gained incompatibility

is exactly given by the incompatibility of Mη
ð1;2;3Þ at the

noise threshold where it becomes pairwise compatible.
Our methods can also be applied to obtain lower bounds.

For instance, we show [32] (Sec. III) that I⋄ðMð1;2;3ÞÞ is
bounded by the average subset incompatibility:

I⋄ðMð1;2;3ÞÞ ≥
1

3
½I⋄ðMð1;2ÞÞ þ I⋄ðMð1;3ÞÞ þ I⋄ðMð2;3ÞÞ�:

ð14Þ

In general, I⋄ðMð1;2;3ÞÞ < I⋄ðMð1;2ÞÞ is possible, i.e.,
adding a measurement to an assemblage can actually
decrease the incompatibility, if we do not optimize
over the input distribution p. For instance, adding a
measurement M3 that is jointly measurable with M#

ð1;2Þ,
such as an identity measurement, generally decreases the
incompatibility.

Another way to see how the incompatibility of an
assemblage Mð1;2;3Þ can be upper bounded in terms of
the incompatibility I⋄ðMð1;2ÞÞ plus the gained incompat-
ibility due to measurement M3 relies on directly applying
specific instances of the triangle inequality without splitting
the measurements.
A new notion of incompatibility.—Consider the general

assemblage Mð1;2;3Þ as defined in Eq. (3). Because of the
triangle inequality, see also Fig. 1, it holds

I⋄ðMð1;2;3ÞÞ ≤ D⋄ðMð1;2;3Þ;N ð1;2;3ÞÞ þ I⋄ðN ð1;2;3ÞÞ; ð15Þ

for any assemblage N ð1;2;3Þ. By choosing N ð1;2;3Þ¼
M#ð1;2Þ

ð1;2;3Þ≔M#
ð1;2Þ ⧺M3, we obtain our second main result.

Result 2.—Let Mð1;2;3Þ ¼ Mð1;2Þ ⧺ M3 be a concat-
enated measurement assemblage and M#

ð1;2Þ the closest

jointly measurable approximation of Mð1;2Þ. It holds

I⋄ðMð1;2;3ÞÞ ≤
2

3
I⋄ðMð1;2ÞÞ þ I⋄

�
M#ð1;2Þ

ð1;2;3Þ
�
: ð16Þ

This means that the incompatibility of Mð1;2;3Þ is upper
bounded by the incompatibility of the subset Mð1;2Þ,
weighted with the probability p ¼ 2

3
, plus the incompati-

bility of the added measurement M3 with the closest
jointly measurable approximationM#

ð1;2Þ ofMð1;2Þ. In [32]
(Sec. III) we also show that the incompatibility of Mð1;2;3Þ
is lower bounded by

I⋄ðMð1;2;3ÞÞ ≥
2

3
I⋄ðMð1;2ÞÞ: ð17Þ

The only incompatibility that contributes to I⋄ðM#ð1;2Þ
ð1;2;3ÞÞ

is the incompatibility of M3 with the assemblage M#
ð1;2Þ,

which itself is jointly measurable. Therefore, this term in
Eq. (16) can be understood as a new notion of incompat-
ibility of the assemblage Mð1;2;3Þ, where all incompatibil-
ities apart of the contribution that comes from the presence
of measurement M3 are omitted.
We show analytically in the SM [32] (Sec. VI) that the

bound inEq. (16) is tight for depolarizedPaulimeasurements
[see Eq. (12)]. Moreover, we show analytically that a
similar bound is tight for certain measurements based on
d-dimensional MUBs in cases where the number of mea-
surements m is changed such that m ¼ 2 → m0 ¼ d,
m ¼ 2 → m0 ¼ dþ 1, and m ¼ d → m0 ¼ dþ 1. Namely,
we prove and analyze the generalization of Eq. (16):

I⋄ðMð1;2;…;mÞÞ ≤
jCj
m

I⋄ðMCÞ þ I⋄ðM#C
ð1;2;…;mÞÞ; ð18Þ

for any assemblage Mð1;2;…;mÞ and any subset C of mea-
surements with cardinality jCj.

FIG. 2. Incompatibility gain for adding a third Pauli measure-
ment. The gained incompatibility is given by the red (dotted) line.
In the regime where I⋄ðMη

ð1;2ÞÞ ≠ 0, the gained incompatibility
remains constant. The red (dotted) curve and the blue curve add
up to the violet one.
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Incompatibility decomposition.—Looking at the results
in Fig. 2 leads to the question of whether there exists a more
general decomposition of I⋄ðMð1;2;3ÞÞ into different incom-
patibility structures. Indeed, since I⋄ðMÞ is a distance-
based incompatibility quantifier, our final main result
follows.
Result 3.—The incompatibility of any assemblageM of

m ¼ 3 measurements is upper bounded such that

I⋄ðMÞ ≤ Igen⋄ ðMÞ þ Ipair⋄ ðMÞ þ Ihol⋄ ðMÞ; ð19Þ
where Igen⋄ ðMÞ is the genuine triplewise incompatibi-
lity of M, i.e., its minimal distance to an assemblage
Mconv ∈ JMconv. Furthermore, we define Ipair⋄ ðMÞ ≔
D⋄ðMconv;MpairÞ to be the pairwise incompatibility,
where Mpair ∈ JMpair is the closest pairwise compatible
assemblage with respect to Mconv. We call the term
Ihol⋄ ðMÞ ≔ I⋄ðMpairÞ the hollow incompatibility, which
implicitly depends on M, see also Fig. 1 and Ref. [20].
We emphasize that the bound in Eq. (19) relies crucially

on the distance properties of the quantifier I⋄ðMÞ and
cannot be adapted directly to robustness or weight quanti-
fiers [26,27]. In the SM [32] (Sec. VII) we show that the
decomposition in Eq. (19) is tight for the three Pauli
measurements, and give numerical indication that this is
generally the case for measurements based on MUBs.
Implications for steering and Bell nonlocality.—Because

of the mathematical structure of our methods, they can
directly be applied to quantum steering and Bell non-
locality. Note that both of these phenomena occur in a
scenario that is similar to the one for measurement
incompatibility. Namely, they depend on the properties
of a set of at least two measurements, while a single
measurement by itself does not contain any resource. This
distinguishes the above concepts from resource theories of
single POVMs (see, e.g., [8,46,47]) where the resource gain
can trivially be determined by considering averages of
single POVM resources [29]. We describe our results
regarding steering and nonlocality in more detail in the
SM [32] (Sec. IV). The analysis of the gain in nonlocal
correlations in Bell experiments is particularly interesting
as it seems fundamentally different from incompatibility
and steering. Consider a Bell experiment where Alice
performs mA ¼ 3 and Bob mB ¼ 2 measurements.
Focusing on dichotomic measurements, we observe the
following intriguing effect: Alice cannot find three mea-
surements, such that the three Clauser-Horne-Shimony-
Holt (CHSH) inequalities [48] CHSHði;jÞ ≔ hAi ⊗ B1i þ
hAi ⊗ B2i þ hAj ⊗ B1i − hAj ⊗ B2i ≤ 2 with ði; jÞ∈
fð1; 2Þ; ð1; 3Þ; ð2; 3Þg are simultaneously maximally viola-
ted. That means, CHSHð1;2;3Þ≔1

3
ðCHSHð1;2ÞþCHSHð1;3Þþ

CHSHð2;3ÞÞ≤ ½ð4 ffiffiffi
2

p þ2Þ=3�<2
ffiffiffi
2

p
holds in quantum the-

ory. This implies, that the average two-subset nonlocality is
lower than the maximal obtainable nonlocality with two
measurements on Alice’s side.

Conclusion and outlook.—In this work, we analyzed
how much incompatibility can maximally be gained by
adding measurements to an existing measurement scheme.
We showed that this gain is upper bounded by the
incompatibility of the underlying parent POVMs that
approximate subsets of measurements. We proved the
relevance of our bounds analytically by showing that they
are tight for specific measurements based on MUBs.
Moreover, we showed that our methods are directly
applicable to quantum steering and Bell nonlocality. For
nonlocality specifically, we discovered a promising path to
understand better why using more than two measurements
may not provide any advantage for maximal nonlocal
correlations [49,50]. Our results reveal the polygamous
nature of distributed quantum incompatibility, in stark
contrast to the monogamy of entanglement [24] and
coherence [25] across subsystems of multipartite quantum
states. While we focused in this text on m ¼ 3 measure-
ments, all our findings, in particular, Results 1–3 can be
generalized to an arbitrary number of measurements m
(see [32], Sec. V).
Our work provides a foundation for several new directions

of research. While we focused on a particular distance-based
quantifier here, the alternative distance-based quantifiers
proposed in [29] do also possess the necessary properties
to be used in a similar way. It would be interesting to see
whether resource quantifiers such as the incompatibility
robustness [27] or weight [26] can also be used to analyze
how the incompatibility of an assemblage depends on its
subsets. Our methods might also prove helpful to find better
bounds on the incompatibility of general assemblages and
particularly maximally incompatible assemblages. Finally, it
would be interesting to analyze the performance gain of
specific cryptography [11,19] or estimation protocols [51]
with different numbers of measurements.
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