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Quantum theory admits ensembles of quantum nonlocality without entanglement (QNLWE). These
ensembles consist of seemingly classical states (they are perfectly distinguishable and nonentangled) that
cannot be perfectly discriminated with local operations and classical communication (LOCC). Here, we
analyze QNLWE from a causal perspective, and show how to perfectly discriminate some of these
ensembles using local operations and classical communication without definite causal order. Specifically,
three parties with access to an instance of indefinite causal order—the Araújo-Feix–Baumeler-Wolf process
—can perfectly discriminate the states in a QNLWE ensemble—the SHIFT ensemble—with local
operations. Hence, this type of quantum nonlocality disappears at the expense of definite causal order
while retaining classical communication. Our results thereby leverage the fact that LOCC is a conjunction
of three constraints: local operations, classical communication, and definite causal order. Moreover, we
show how multipartite generalizations of the Araújo-Feix–Baumeler-Wolf process are transformed into
multiqubit ensembles that exhibit QNLWE. Such ensembles are of independent interest for cryptographic
protocols and for the study of separable quantum operations unachievable with LOCC.
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Introduction.—The famously counterintuitive nature of
quantum theory owes much to the phenomenon of entan-
glement that forces “its entire departure from classical
lines of thought” [1]. Perhaps the deepest consequence of
entanglement is its role in revealing the tension between
quantum theory and locality that is central to Bell’s theorem
[2]. This tension, however, does not stop at entanglement
and Bell’s theorem. It persists in a different form even
without entanglement, as captured by the phenomenon of
quantum nonlocality without entanglement (QNLWE) [3].
At the heart of quantum nonlocality—with or without

entanglement—is the interplay of causation and correlation
[4,5]. While in Bell’s theorem the notion of locality at play
is local causality [6], in QNLWE, it is the locality of
operations [3]. To demonstrate QNLWE, Bennett et al. [3]
present locally imperfectly discriminable ensembles of
mutually orthogonal product quantum states, e.g., the
SHIFT ensemble

fj000i; j111i; j þ 01i; j − 01i;
j1þ 0i; j1 − 0i; j01þi; j01−ig: ð1Þ

Although states in such an ensemble can be prepared
locally, parties sharing an unknown state from the ensemble
cannot perfectly identify the state with local operations and
classical communication (LOCC). The classical commu-
nication in LOCC is implicitly assumed to respect a

“definite causal order” (“causal order” for short). In
each round, the direction of communication is determined
from all past data. A necessary consequence of this
constraint is that at least one party must initiate the
communication. By contrast, in the case of Bell non-
locality, all communication is excluded by the require-
ment of spacelike separation. The background assumption
of definite causal order, however, is common to both types
of nonlocality.
What if we drop the assumption of a definite causal order

and regard it as a physical quantity sensitive to quantum
indefiniteness [7]? This possibility has attracted much
interest in recent years, e.g., as in the quantum switch
[8] achievable through indefinite wires connecting quantum
gates [9] or through indefinite spacetime geometries
formed from matter in a superposition of locations [10].
Oreshkov, Costa, and Brukner [11] show that if, without
further assumptions on causal connections, one insists that
parties locally cannot detect any deviation from standard
quantum theory, then indefinite causal order arises natu-
rally: Their process-matrix framework encompasses the
quantum switch [12,13], and also exhibits noncausal
correlations, i.e., correlations unattainable under a global
causal order among the parties (see also Refs. [14–16]).
Moreover, they show that the exotic causal possibilities that
arise between two parties disappear in the classical limit.
For three parties or more, however, logically consistent

classical processes that create noncausal correlations
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exist [17] (the interested reader may consult the Appendix
for more details). For example, the deterministic
Araújo-Feix–Baumeler-Wolf (AF-BW) process [18,19]
exchanges bits among three parties—Alice, Bob,
and Charlie—in the following way. Each party receives
a bit

a≔ ðy⊕ 1Þz; b≔ ðz⊕ 1Þx; c≔ ðx⊕ 1Þy ð2Þ

from the process and thereafter provides a bit of their
choice x, y, z to the process. This resource allows every
pair of parties to communicate to the third (e.g., Alice
receives a which nontrivially depends on y, z of Bob and
Charlie) in a single round. Each party acts in the causal
future of the other two.
The possibility of indefinite causal order—in particular,

the AF-BW process—raises the following natural question:
What happens to the tension between quantum theory and
locality once the assumption of definite causal order is
dropped?
Results.—In this Letter, we show how one can trade

causal order for the locality of operations in perfectly
discriminating QNLWE ensembles. The tension between
quantum theory and locality suggested by QNLWE thus
disappears in the absence of a definite causal order.
Specifically, local quantum operations assisted with
classical processes can allow the parties to perfectly
discriminate ensembles of quantum nonlocality without
entanglement. Three parties communicating through the
classical AF-BW process [Eq. (2)] can discriminate the
SHIFT ensemble [Eq. (1)]. In fact, this process allows
the parties tomeasure quantum systems in the SHIFT basis.
Conversely, we show that such a measurement implements
the classical channel underlying the AF-BW process. We
use the insights from these protocols to show how any
Boolean n-party classical process without global past can
be turned into an n-qubit ensemble of states that exhibits
quantum nonlocality without entanglement. These results
establish an operational link between QNLWE and
classical processes without causal order. (See also
Ref. [20] for a suggested link between such processes
and Bell nonlocality and Ref. [21] for a tension between the
assumptions of definite causal order and parameter
independence).
SHIFT-basis measurement from AF-BW process.—The

parties Alice, Bob, and Charlie hold a quantum system in
the three-qubit state jψi. The following protocol imple-
ments a measurement of jψi in the SHIFT basis (see Fig. 1).
First, each party receives a classical bit a, b, c from the
process. Then, each party applies a Hadamard transforma-
tion on their share of jψi if the received bit is 1, i.e., the
parties apply Hða;b;cÞ ≔ Ha ⊗ Hb ⊗ Hc. Now, they mea-
sure the quantum system in the computational basis, obtain
the postmeasurement state jxyzi, and forward x, y, z to
the AF-BW process. Finally, the parties applyHða;b;cÞ to the

postmeasurement state. By this, the final state of the
quantum system is

X
x;y;z

���hxyzjHða;b;cÞjψi
���2Hða;b;cÞjxyzihxyzjHða;b;cÞ: ð3Þ

Note that the AF-BW process determines the values of a, b,
c as a function of x, y, z.
First, we show that if jψi∈SHIFT, then this protocol

returns the state jψi with certainty. If jψi ¼ j000i, then the
probability

jhxyzjHððy⊕1Þz;ðz⊕1Þx;ðx⊕1ÞyÞj000ij2 ð4Þ

is one for x ¼ y ¼ z ¼ 0, and zero otherwise: The final
state is j000i. Instead, if jψi ¼ j01þi, then the only
contribution arises for x ¼ z ¼ 0 and y ¼ 1

ðjh010jHð0;0;1Þj01þij2 ¼ 1Þ, and the final state is
Hð0;0;1Þj010i ¼ j01þi. By symmetry, the same follows
for all SHIFT-ensemble states. In other words, for each
SHIFT state there exists a unique and distinct triple x, y, z
that contributes to the sum; namely, x, y, z encode the
qubits of the SHIFT state (0 if the qubit is in the state j0i
or jþi, and 1 otherwise). By linearity, this analysis extends
to any quantum state jψi. Measuring an arbitrary state
jψi ¼ P

jki∈SHIFT αjkijki in the SHIFT basis yieldsP
jki∈SHIFT jαjkij2jkihkj, which is identical to the returned

state of the protocol

jαj000ij2j000ih000j ð5Þ

þjαjþ01ij2Hð1;0;0Þj001ih001jHð1;0;0Þ ð6Þ

FIG. 1. Schematic of protocol to implement the SHIFT-basis
measurement on an arbitrary quantum state jψi with local
operations and classical communication without causal order.
Thick wires represent classical bits, normal wires qubits, and the
stars represent the interface to the AF-BW process.
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þjαj01þij2Hð0;0;1Þj010ih010jHð0;0;1Þ ð7Þ

þ � � � : ð8Þ

Now it is clear that if the parties communicate through
the AF-BW process, then they perfectly discriminate the
SHIFT ensemble. The classical data collected in the above
protocol uniquely specifies the SHIFT state they were
given. The bits a, b, c they receive from the process specify
the basis, and the bits x, y, z they receive from the
measurement specify the state in the corresponding basis,
e.g., a ¼ 0, b ¼ 0, c ¼ 1, x ¼ 0, y ¼ 1, z ¼ 0 encode the
state j01þi.
AF-BW channel from SHIFT-basis measurement.—

Conversely, suppose three parties, Alice, Bob, and
Charlie, have access to a measurement device that measures
a three-qubit system in the SHIFT basis and returns to each
party the classical description of the postmeasurement qubit
state. For instance, if the three-qubit postmeasurement state
is j þ 01i, then Alice receives the label þ, Bob 0, and
Charlie 1. The following protocol (see Fig. 2) implements
the classical channel underlying the AF-BW process via
such a SHIFT-basis measurement, i.e., the parties start with
three bits x, y, z of their choice and end up with
a ¼ ðy ⊕ 1Þz, b ¼ ðz ⊕ 1Þx, c ¼ ðx ⊕ 1Þy. (If the varia-
bles a, b, c were in the respective local pasts of the
variables x, y, z—as they are in the complementary
protocol of Fig. 1—this AF-BW channelwould correspond
to the noncausal AF-BW process).
First, each party encodes the respective bit in the

computational basis of a qubit, i.e., they locally generate
a quantum system in the state jψi ¼ jxyzi. In the second
step, they feed jψi into the measurement device and record
the outcome lA;lB;lC ∈ f0; 1;þ;−g, where lA is Alice’s
outcome and so forth. Finally, they apply the function
f∶0 ↦ 0, 1 ↦ 0, þ ↦ 1, − ↦ 1 to obtain the bits a, b, c.
Suppose the bits x, y, z are chosen such that x ¼ y ¼ z.

The prepared quantum state jxyzi is a member of the
SHIFT basis. The measurement device therefore replies the
labels lA ¼ lB ¼ lC ∈ f0; 1g, and, according to the pro-
tocol, the parties set a ¼ b ¼ c ¼ 0, which is the correct
value. If the bits are specified as x ¼ y ¼ 0 and z ¼ 1,
then the prepared state jxyzi in not a member of the
SHIFT ensemble and the measurement device responds

probabilistically: jhþ01j001ij2 ¼ jh−01j001ij2 ¼ 1=2. In
either case, however, the parties correctly end up with
a ¼ 1, b ¼ c ¼ 0. By symmetry, the parties compute a, b,
c as desired for all inputs x, y, z.
The correspondence between the SHIFT ensemble and

the AF-BW process that we have shown above can be
understood as a consequence of the following mathematical
fact: the global correlations between the local basis choices
(Z or X) and the local basis states (j0i or jþi vs j1i or j−i)
in the SHIFT ensemble are exactly the correlations between
local inputs (a; b; c∈ f0; 1g) and local outputs
(x; y; z∈ f0; 1g) specified by the AF-BW process. This
mathematical fact allows us to use the AF-BW process to
implement the SHIFT measurement via local operations
and, conversely, to use any implementation of the SHIFT
measurement to realize the classical channel underlying the
AF-BW process. Indeed, this observation holds more
generally for multiqubit instances of QNLWE, as we
now demonstrate.
Multipartite QNLWE.—We show that all Boolean

classical processes that violate causal order in a maximal
sense—classical processes where each party can receive a
signal from at least one other party—give rise to ensembles
that exhibit quantum nonlocality without entanglement.
Classical processes are characterized by a unique fixed-
point condition [22,23] as follows. Let ωn be a Boolean
function f0; 1gn → f0; 1gn, and F the set of all functions
f0; 1g → f0; 1g. The function ωn is a Boolean n-party
classical process if and only if

∀ μ∈F n; ∃ !p∈ f0; 1gn∶ p ¼ ωn
�
μðpÞ

�
; ð9Þ

i.e., if and only if for each choice of interventions μi of each
party there exists a unique fixed point of ωn∘μ. Here, μ ¼
ðμ1; μ2;…; μnÞ is a tuple of n local Boolean functions.
Moreover, we say that ωn has no global past if and only if

∀ i ∃ k; x∈ f0; 1gn∶ ωn
i ðxÞ ≠ ωn

i ðxðkÞÞ; ð10Þ

where xðkÞ ¼ ðx1;…; xk−1; xk ⊕ 1; xkþ1;…; xnÞ is the same
as x but where the kth bit is flipped, and where ωn

i is the ith
component of ωn. This condition states that every party i
can receive a signal through the process from at least one
other party k; no party lies in the global past of all other
parties.
Theorem.—If ωn is a Boolean n-party classical process

without global past, then

Sωn ≔
�
HðωnðxÞÞjxijx∈ f0; 1gn

�
ð11Þ

is a basis of orthonormal states that exhibits QNLWE.
Proof.—The states in the set Sωn with cardinality 2n are

normalized. Now we show that they are orthogonal, i.e.,
FIG. 2. Schematic of protocol to realize the AF-BW channel
from a SHIFT-basis measurement.
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∀ x ≠ y∶ hyjHðωnðyÞ⊕ωnðxÞÞjxi ¼ 0; ð12Þ

where ⊕ is bitwise addition modulo 2. Pick two n-bit
strings x ≠ y and suppose without loss of generality that
they differ in the first k positions only. Orthogonality
[Eq. (12)] states that there exists some i ≤ k with
ωn
i ðxÞ ¼ ωn

i ðyÞ. Toward a contradiction, however, assume
∀ i ≤ k∶ ωn

i ðxÞ ≠ ωn
i ðyÞ. Since ωn is a classical process,

the reduced function ω̃n∶ f0; 1gk → f0; 1gk with

z ↦ ½ωn
1ðz; xkþ1;…; xnÞ;…;ωn

kðz; xkþ1;…; xnÞ� ð13Þ

is a classical process as well (see the Appendix or [ [24],
Lemma A.3]). To simplify notation, let x0 be the first k bits
of x, and similarly for y0, and define a ≔ ω̃nðx0Þ,
b ≔ ω̃nðy0Þ. Now, a and b are fixed points under the
following two k-party interventions α and β, respectively,

i.e., a ¼ ω̃n
�
αðaÞ

�
, b ¼ ω̃n

�
βðbÞ

�
for

α; β∶ f0; 1gk → f0; 1gk ∈F k ð14Þ

α∶ w ↦ x0 ⊕ a ⊕ w ð15Þ

β∶ w ↦ y0 ⊕ b ⊕ w: ð16Þ

However, because ∀ i ≤ k∶ x0i ⊕ y0
i
¼ ai ⊕ bi ¼ 1, the

function ω̃n∘α has a second fixed point b

ω̃n
�
αðbÞ

�
¼ ω̃nðx0 ⊕ a ⊕ bÞ ¼ ω̃nðy0 ⊕ b ⊕ bÞ ð17Þ

¼ ω̃n
�
βðbÞ

�
¼ b; ð18Þ

and therefore ωn is not a classical process. This proves that
the set Sωn forms a basis of orthonormal states. What
remains to show is that this set exhibits QNLWE. This
follows from the assumption that ωn has no global past.
From Eq. (10) we have that for each party i there exist two

bit strings x, y such that the ith qubit ofHðωnðxÞÞjxi is in the
computational basis fj0i; j1ig, while the ith qubit of

HðωnðyÞÞjyi is in the Hadamard basis fjþi; j−ig. This
means that each party must change its basis depending
on the bases of the other parties at least once: it follows that
no party makes a basis choice that is independent of the
other parties’ measurements. Therefore, in an LOCC
protocol for perfect discrimination, no party can initiate
the communication. ▪
Examples.—The following is an ensemble exhibiting

QNLWE for four parties. It is constructed from the classical
process of Ref. [20] inspired by the Ardehali-Svetlichny
nonlocal game [25,26]:

fj0000i; j0þ 01i; j þ 01þi; j001−i;
j01þ 0i; j þ −01i; j01 − 0i; j0111i;
j1þ 0þi; j1þþ−i; j − 01þi; j1þ −−i;
j1 − 00i; j − −01i; j111þi; j1 − 1−ig: ð19Þ

Another example based on the generalizations of the AF-
BW process proposed in Ref. [27] is the following:

fj0000i; j0101i; j0111i; j1010i;
j1011i; j1101i; j1110i; j1111i;
j001þi; j001−i; j01þ 0i; j01 − 0i;
j1þ 00i; j1 − 00i; j þ 001i; j − 001ig: ð20Þ

Conclusions.—We have shown that Boolean n-party
classical processes without global past can be mapped to
a family of n-qubit ensembles exhibiting quantum non-
locality without entanglement (QNLWE) and, as such, can
discriminate these ensembles via local quantum operations.
We illustrated this connection explicitly for the tripartite
case of the SHIFT ensemble [3] with respect to the AF-BW
process [18,19]. This discovery therefore refines the notion
of QNLWE: ensembles of QNLWE consist of mutually
orthogonal product states that cannot be perfectly discrimi-
nated with LOCC under a definite causal order.
Several open questions arise from our results. We have,

in particular, not discussed bipartite instances of quantum
nonlocality without entanglement, e.g., the two-qutrit
domino states [3]. This is because in the bipartite case,
logically consistent classical processes have a definite
causal order, as shown by Oreshkov et al. [11]. To be
sure, this instance of QNLWE can be interpreted as an
instance of classical communication without causal order
[28,29], but this requires a relaxation of the constraint of
logical consistency that is central to the process-matrix
framework [11]. Indeed, in the bipartite case, Akibue et al.
[28] show that the set of transformations achievable via
local operations and classical communication without
causal order (their “LOCC*”) coincides with the set of
separable operations. This means that the two-qutrit
domino states can be perfectly discriminated by LOCC*,
as shown explicitly in Ref. [28,30]. Hence, while bipartite
instances of QNLWE can be achieved under an arbitrary
relaxation of causal order (as represented by LOCC*), it
cannot be achieved under a relaxation of causal order that is
consistent with the process-matrix framework. Our results,
on the other hand, show that multipartite instances of
QNLWE can be achieved under a relaxation of causal order
that is consistent with the process-matrix framework, i.e.,
without the possibility of logical paradoxes.
In the multipartite case, our results allow us to reinterpret

the phenomenon of QNLWE as an operational witness of
noncausality that has a qualitatively different character than
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the violation of causal inequalities. This opens up several
potential connections with the wider literature on QNLWE
and calls for a deeper understanding of its connection with
noncausality. Indeed, as we have demonstrated, these
results also offer a route to construct new instances of
QNLWE. These instances are of relevance for quantum
cryptography, e.g., in quantum data hiding [31,32]. We also
know that in standard quantum theory, multiqubit instances
of QNLWE are incapable of witnessing a strong form of
nonclassicality, i.e., logical proofs of the Kochen-Specker
theorem [33], and it would be interesting to investigate the
implications of this fact for (non)causality in the process-
matrix framework [11]. Similarly, higher-dimensional gen-
eralizations of multipartite QNLWE [34] could also inspire
new types of noncausal classical processes. The domino
states, however, suggest that a mapping from ensembles of
QNLWE to noncausal classical processes is in general
impossible. The bipartite case, together with other gener-
alizations of our results in the multipartite setting—in
particular, the gap between separable and LOCC opera-
tions—will be taken up in forthcoming work.
The tradeoff between causal order and locality has also

been studied in other senses. Costa de Beauregard [35]
explains entanglement through retarded waves (see also
Price [36]), and Deutsch’s time-travel model [37] can be
turned into a local-realistic hidden-variable model for Bell
correlations [38]. However, this latter approach—just as the
results by Akibue et al. [28]—diverts from the process-
matrix framework, and therefore predicts nonlinear statis-
tics, allowing the possibility of detecting new physics
locally. In contrast, processes from the process-matrix
framework do not alter local physics by design, e.g., they
do not allow signaling from the output of a party to its
input. However, if one requires the correlations to be
nonsignaling under any choice of interventions, then unlike
QNLWE, Bell nonlocality is unaffected by any relaxation
in causal order that is consistent with the process-matrix
framework.
Let us also remark that whether the AF-BW process

arises in general relativity would affect the interpretation of
the noncausality witnessed via the perfect state discrimi-
nation task we have considered. In a Minkowski spacetime,
three parties cannot discriminate the SHIFT ensemble with
local operations and classical communication. However, if
the parties are situated in a general-relativistic spacetime
that realizes the AF-BW process, then this task becomes
feasible. A successful discrimination of the SHIFT ensem-
ble would then be an operational signature for the non-
causal nature of such a general-relativistic spacetime. On
the other hand, if the AF-BW process turns out not to be
realizable in a general-relativistic spacetime but instead
requires an intrinsically nonclassical notion of spacetime
(arising from, e.g., quantum gravity), then this discrimi-
nation task would serve as an operational signature of
noncausality that is intrinsically nonclassical. To be sure, in

such a situation, the communication between the labs
would still be classical but the physical conditions for
achieving this communication would be outside the realm
of possibilities afforded by general-relativistic spacetimes.
The latter possibility could have interesting implications for
how one might interpret time-delocalized realizations [39]
of the AF-BW process [40].
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Appendix: Classical processes.—The process-matrix
framework [11] describes the most general interconnec-
tions among various parties under the assumption that it
is impossible for the parties to locally detect any
deviation from quantum theory. Crucially, no restriction
on the causal relations among the parties is made.
Classical processes, as invoked in this Letter, arise as
the classical limit of the process-matrix framework [19],
but can also be derived independently and without
referring to quantum theory, as it is done in this
Appendix.
For the following description of the classical processes,

you may consult Fig. 3. Consider an n-party scenario,
where we label the parties with the natural numbers
½n� ≔ f0; 1;…; n − 1g. Each party k∈ ½n� is formalized
as a pair of sets ðIk;OkÞ. The set Ik is the input space of k,
and Ok the output space of party k. Moreover, we define
F k ≔ fIk → Okg as the set of all functions from the input
space to the output space of party k. The assumptions of the
framework are (A) each party k∈ ½n� can implement any
function (hereafter called intervention) μk ∈F k of their
choice, (B) the parties are isolated and may only commu-
nicate by reading messages from the input spaces and
inscribing messages to the output spaces, and (C)
each party k∈ ½n� gets an input ik ∈ Ik exactly once and
applies the chosen intervention μk exactly once. For the
sake of presentation, we define the Cartesian product
I ≔ ×k∈ ½n�Ik, and similarly for O and F . Also, we
define the collection i ≔ ðikÞk∈ ½n� and similarly for o.
Assumptions (B) and (C) require i to functionally depend
on o, i.e., ωðoÞ ¼ i, for some function ω∶ O → I . The
value of o, then again, functionally depends on i through
the choice of interventions μ, i.e., o ¼ μðiÞ. By invoking
assumption (A), an n-party process is a function ω∶ O →
I that satisfies the fixed-point condition
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∀ μ∈F ; ∃ i∈ I∶ i ¼ ω
�
μðiÞ

�
: ðA1Þ

Thus, for any choice of interventions μ of the parties, a
well-defined input i to the parties exists. This fixed-point
condition [Eq. (A1)] has as consequence [23] the unique
fixed-point condition [Eq. (9) in this Letter]:

∀ μ∈F ; ∃ !i∈ I∶ i ¼ ω
�
μðiÞ

�
; ðA2Þ

where ∃ ! is the uniqueness quantifier. This, actually,
ensures logical consistency. The input i to the parties is
unambiguously determined (see Ref. [23] for a detailed
discussion).
Processes are generalizations of shared states, commu-

nication channels, and circuits. A shared state—where the
parties do not communicate—is simply given by a process

ωstate∶ o ↦ ðc0; c1;…; cn−1Þ ðA3Þ

for some constants ðckÞk∈ ½n�. Here, the fixed-point con-
dition is satisfied independently from the choice of inter-
ventions μ by the constants ðckÞk∈ ½n�. An example of a
communication channel, as schematically depicted in
Fig. 3, is given by

ωcom∶ ðo0; o1;…; on−1Þ ↦ ðc; o0; o1;…; on−2Þ ðA4Þ

for some constant c. This communication channel provides
the constant c to party 0, and each remaining party k
obtains ok−1 on their input space. Here, the fixed-point
depends on the choice of interventions. It is given by i0 ¼ c
for party 0, and ik ¼ μk−1∘ � � � ∘μ1∘μ0ðcÞ for each remain-
ing party k. More complex situations are also expressible
with processes. For instance, take a circuit C composed out
of classical gates, and now let each party k∈ ½n� occupy the
region of a gate in C (see Fig. 4). Here, the process ωC
simply implements the transformations on the nonoccupied
regions of C.

Classical communication without definite causal
order: Classical processes for three or more parties allow
for scenarios beyond those discussed above. In the above
examples, a global causal ordering of the parties always
exists. This is radically contrasted with the AF-BW process
[18,19] [Eq. (2) in this Letter]:

ωAF-BWðx; y; zÞ ¼ ½ðy ⊕ 1Þz; ðz ⊕ 1Þx; ðx ⊕ 1Þy�: ðA5Þ

To see this, we can devise causal inequalities—similar to
Bell inequalities [2]—that limit the possible correlations
among the parties under the assumption of a global causal
order. Let Pða; b; cjx; y; zÞ be three-party correlations
where a party—say Alice—specifies a setting x and
observes the outcome a, and similarly for the other two
parties Bob and Charlie. The assumption of a global causal
order limits the parties to only influence events in their
causal future. So, three-party correlations are called causal
if and only if they can be decomposed as

Pða; b; cjx; y; zÞ ¼ λAPðajxÞPa;xðb; cjy; zÞ ðA6Þ

þ λBPðbjyÞPb;yða; cjx; zÞ ðA7Þ

þ λCPðcjzÞPc;zða; bjx; yÞ; ðA8Þ

with λA; λB; λC ≥ 0, λA þ λB þ λC ¼ 1, and where
Pa;xðb; cjy; zÞ and the other terms denote two-party causal
correlations. Here, λA specifies the probability that Alice
acts first. Recursively, two-party correlations Pða; bjx; yÞ
are causal if and only if they can be decomposed as

Pða; bjx; yÞ ¼ γPðajxÞPðbjy; a; xÞ ðA9Þ

þð1 − γÞPðbjyÞPðajx; b; yÞ; ðA10Þ

for some γ ≥ 0.
Let a; b; c; x; y; z be the values of binary random

variables. If the three-party correlations Pða; b; cjx; y; zÞ
are causal, then they satisfy the following causal inequality
for uniformly distributed x, y, z [19]:

Pr½ða; b; cÞ ¼ ωAF-BWðx; y; zÞ� ≤ 3=4: ðA11Þ

Clearly, this inequality is deterministically violated when-
ever Alice, Bob, and Charlie communicate through the

FIG. 3. Each party k∈ ½n� implements a function μk∶ Ik → Ok
of their choice. The process, i.e., the grayed-out higher-order
map, interconnects the parties. In red, we have schematically
displayed an example where party 0 receives a constant c, party
1 ≤ k ≤ n − 1 receives the output of party k − 1, and the output of
party n − 1 is discarded. A corresponding process is ω∶ O → I
with ωðo0; o1;…; on−1Þ ¼ ðc; o0;…; on−2Þ. FIG. 4. A circuit with holes is a process.
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AF-BW process: The AF-BW process allows for correla-
tions incompatible with any global causal order of the
parties.
Reduced processes: In this Letter we make use of

reduced functions. Consider a function ω∶ ×k∈ ½n�Ok →
×k∈ ½n�Ik with its components fωl∶ ×k∈ ½n�Ok → Ilgl∈ ½n�.
We call the function ω component-wise nonsignaling if and
only if for all l, the lth input to ω does not influence the
output of the component ωl, i.e.,

∀ l∈ ½n�; ðol;o0lÞ∈O2
l; onl∈ ×

k∈ ½n�nflg
Ok∶ ðA12Þ

ωlðol; onlÞ ¼ ωlðo0l; onlÞ: ðA13Þ

If the function ω is component-wise nonsignaling, we can
define the reduced function ωμr for all parties l ≠ r, where
the intervention μr of one party r is taken into account

ωμr
l ∶ ×

k∈ ½n�nfrg
Ok → Il ðA14Þ

ðokÞk∈ ½n�nfrg ↦ ωlð…; or−1; ôr; orþ1;…Þ ðA15Þ

by specifying

ôr ≔ μr∘ωrð…; or−1; cr; orþ1;…Þ ðA16Þ

for some arbitrary cr. This allows for the following
statement [24]. If ω is an n-party process, then ω is
component-wise nonsignaling, and for all parties r∈ ½n�
and all interventions μr ∈F r, the reduced function ωμr is an
(n − 1)-party process.
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